What is easy?

I have been thinking about the phrase “it’s easy,” and how hurtful that phrase can be. Just because something is easy for one person doesn’t mean it is easy for everyone. And conversely, just because something seems like it will be hard doesn’t mean it will be hard.

Maybe you think someone doesn’t have a lot on their plate compared to you. But maybe their plate is smaller than yours and doesn’t have a lot of room to begin with. Or maybe their plate is paper, and their flimsy paper plate can’t hold as much as your sturdy ceramic plate can.

Secret Kindness Agents

Sometimes “it’s easy” is deployed in a very personal way – something I think is easy but someone else might not find easy. For example, I think functions are fairly straightforward – easy, even – but for many students they are one of the most challenging parts of programming. Even when I am frustrated as a teacher, telling my students that it is easy doesn’t help them understand, it only makes them feel worse about how challenging they find it.

When I taught middle school, a teacher down the hall had a big sign in her class that said, “YET.” Her philosophy was that when students did not succeed, it was because they had not yet mastered the material. What a forgiving and empowering view of learning: it isn’t that students are deficient, it’s that they aren’t strong yet. Yet is a very growth mindset point of view.

On the flip side, “it’s difficult” can be just as arbitrary. One teacher I know believes that nothing is truly difficult (even functions!), that if students are struggling, it means we aren’t teaching it very well.

One example of something that seems hard is recursion. We have a shared belief that recursion is hard. It means that students come to believe that recursion is hard. Yet at its most basic, the idea that a function can call itself isn’t that hard. And especially for problems that are recursive in nature – the Fibonacci sequence for example – the recursive solution is obvious, and is what students will natively come up with if asked to figure it out.

Thinking things are hard or easy can be a barrier for students – scaring them or preventing them from accessing things we perceive to be too hard, or making them feel bad for not grasping things that are “easy.” Hopefully we can all achieve the goal of making learning accessible – not too hard and not too easy.

Michelle Friend
At-Large Representative

Preparing Computer Science Teachers

I’ve been fortunate enough to have some great conversations about what CS teachers need to know over the last year. Stakeholder groups, including teacher education programs, state department of education specialists, CS and education faculty at higher education programs, are all working to figure out how to develop sustainable models of preparing computer science teachers to meet the growing demand for CS teachers.

Some of the conversations are driven by and informed by the current process to refresh the CSTA and ISTE Standards for CS Educators. In January 2019, CSTA and ISTE began work on these standards, which seek to set clear goals for CS teachers know and be able to do in the classroom, serve as aspirational goals for CS teachers, and establish benchmarks for those providing learning opportunities for CS teachers. The second draft has now been released and is available at csteachers.org/page/standards-for-cs-educators for comment until October 11th. The final version is expected to be available by the end of 2019.

Other conversations have been very focused on practical matters, including what should be included in a computer science methods course. Here is a list of items that education and computer science faculty brainstormed during a workshop sponsored by the Maryland Center for Computing Education this summer. Workshop participants drew on their experiences teaching methods courses for generalist educators (often at the elementary and middle school level) and for secondary educators seeking licensure in a specific topic.

  • CS Subject Matter Knowledge (SMK),  in particular for generalists as they may not have had a standalone course in computer science
  • CS Pedagogical Content Knowledge (PCK) – how to teach computer science
  • Evaluating curriculum – how to choose a curriculum that aligns with relevant standards, is relevant to students, engages students, etc.
  • Unit Planning – how to create a set of lessons that build on each other to achieve learning objectives
  • Understanding and aligning with student standards (e.g. CSTA K12 Standards)
  • Common misconceptions in learning computer science, including how students construct models of how a computer works
  • Classroom management, especially managing instructional technology and devices
  • Formative and summative assessments of computer science learning 
  • Designing instruction for all students, including those with learning or physical disabilities and those typically underrepresented in computing
  • Understanding professional codes of ethics for computer scientists and the impacts of computing
  • Supporting students in learning academic vocabulary as well as reading in the content area
  • Teaching methods for computer science, including strategies such as peer instruction, POGIL, pair programming, worked examples with subgoals, Parson’s problems, and many more
  • Integrating computer science in other content areas, in particular for generalists
  • Field experiences – a teaching placement in a school that includes computer science

Of course, this is not an exhaustive list of what might be included in a CS methods course, nor would all of these topics necessarily be included in a single methods course. Teacher educators may need to consider their local context, including where there is overlap with other areas of their education program and the state licensure requirements. But, it is a start and I’m looking forward to having more conversations in the future with stakeholders working on developing sustainable programs for computer science teachers.

Jennifer Rosado
Board Chairperson

Recent Good News on Participation and Opportunities for Young Women Studying Computer Science

Two pieces of important and good news have come out recently about the state of, and opportunities for, the participation of young women in computer science.   The first is the participation of women in the 2019 computer science advance placement exams; the second is the announcement of this year’s Aspirations in Computing awards program organized by the National Center for Women & Information Technology.   Together, they are an indication of how far we’ve come as a community in recent years in embracing the opportunities for young women to study computer science in high school, and in providing encouragement and support to continue these studies in college.

The participation in the computer science AP exams, like most everything else associated with computing, has exploded in recent years, and the participation of young women has outpaced the overall growth.   As is summarized in this article, the total number of women taking CS AP exams in 2019 grew 32% since last year, to over 48,000, and the percentage of women among all test-takers increased to over 29%.   The growth in the number of women taking AP CS is nearly five-fold in just four years, and the percentage of women which had hovered in the high teens for years has grown dramatically.

Much of the growth of enrollment in high school computer science, and in CS AP exams, is due to the CS Principles course.   As is described here, in just three years since this course and exam were introduced, the number of students taking CS Principles AP has skyrocketed to over 96,000, which now is nearly 60% of the total CS AP test takers. And the participation of women students in the CS Principles AP exam outpaces the overall CS AP participation by women, at 33%.   This still is far from half but is approaching a tipping point! 

A great accompaniment to the quickly growing participation of young women in high school computer science courses is the NCWIT Aspirations in Computing Program.   The Aspirations program has grown over recent years to include not only awards that have become well known, but also community elements that stretch down to lower grades and up to the university level.  Here I’ll just focus on the upcoming awards program.  The Aspirations awards are a great opportunity to recognize and encourage young women who are actively engaged in computing at the high school level.   By a system of competitions and awards that now is conducted in 79 separate regions across the US, this program provides opportunities to recognize many young women annually (nearly 14,000 since 2007!), as well as their teachers.   Having been to several regional Aspirations awards ceremonies, it is inspirational to see the impact of this program on the young women and on their families.   Please encourage your students to apply to Aspirations, and support them in taking courses that lead to the CS AP exams!

Bobby Schnabel
Board Representative

The Second-Best Job

Don’t get me wrong, being retired is the best job ever (with teaching a close second!) but I must say I feel very lucky to be able to stay active in the computing education community. Particularly, being the co-chair of the ACM Education Board and participating as a CSTA Board member has given me opportunities to keep learning and participating with people around the world. 

I was invited to attend the ACM SIGCSE China conference in May, 2019 in Chengdu China https://www.acmturc.com/2019/en/SIGCSE.html(and yes, the panda bears were very cute). I was part of a panel which was titled Computer Education Research. Panelists included Junlin Lu (China), Juan Chen (China), Jane Prey (USA), Steve Cooper (USA), Andrew Luxton-Reilly (New Zealand), Brett Becker (Ireland), Bo Yang (China). While this may sound like a research discussion, we ended up talking about various scenarios for teaching computing in primary grades (aka K-12.) There were many opinions and ideas around the availability of resources, diversity and engagement. We discussed the different languages used, the various approaches, etc – takeaway #1: People from around the world ask the same kinds of questions we do on how to best teach their students. 

What I enjoyed most were our conversations on how “easy” vs “challenging” the content should be and if programming/coding should be the principle deliverable from the class. Particularly interesting comments included:  if it’s too easy, what are they learning?, how to keep students interested in doing something challenging?, how to challenge students and have them feel successful and rewarded for doing the hard work?, how to recognize when to push and when to hold back, how to have students add to their ability to solve problems? My takeway #2 is that our group (panelists and attendees) believe that computing in school should be fun, that fun does not mean easy, that fun should include moments of reflection and work, that work should be fun. 

Takeaway #3: there are many smart and passionate people around the world working to answer these questions. I am very lucky my grandchildren will be taught by such people. 

Happy New School Year!

Jane Prey ACM Representative

Data Science in Schools

I’ve no doubt that good CS education involves finding some motivating contexts for getting the ideas across, and for pupils to get to grips with programming. Lots of teachers have found their pupils highly engaged through creating games and animations, or through interacting with the real world through physical computing and robotics, or, perhaps more unusually, through algorithmic art or composing music. I think we could make a good case for adding some data science into this mix, getting pupils to do a little visualisation and exploratory data analysis, and through this starting to answer some genuinely interesting questions. 

When we wrote the English computing curriculum, we included some explicit references to working with data: 7-11 year olds are taught “collecting, analysing, evaluating and presenting data”, and 11-14 year olds “undertake creative projects that involve selecting, using, and combining multiple applications, preferably across a range of devices, to achieve challenging goals, including collecting and analysing data.” Or at least they’re supposed to. CSTA’s standards go quite a bit further, with a whole strand given over to data and analysis, with a clear sense of progression and ambitious targets for high schoolers like “Create interactive data visualizations” and “use data analysis tools and techniques to identify patterns in data representing complex systems”.  I worry that we’ve put so much emphasis on coding that these crucial skills, and the consequent understanding gets overlooked in too many schools. It needn’t be this way. Indeed there’s plenty of scope for doing this data visualisation and analysis with code. 

I’ve been thinking recently about how we can take the foundations / application / implications (that’s roughly computer science, IT and critical digital literacy) model that underpins the English computing curriculum and apply it to related (and some unrelated) subjects, to help promote a broader and more balanced approach to curriculum design. We can use this model for thinking about data science in schools. 

If we’re serious about pupils’ learning data science, then I think we need to lay the foundations with some old school probability and statistics: typically these are already part of the math curriculum, but there’s so much more we can do here when we let our pupils use computers for this, from simulating dice rolls, through plotting graphs to calculating summary statistics for some big datasets. All these things can be done by hand (‘unplugged’?), but once pupils have an idea of the techniques, they can concentrate on selecting and using the right tools, and making sense of the results if they use technology to automate the automatable parts of the process – it’s far more interesting and useful to be able to make sense of a scatterplot (for example) than to be able to draw one by hand.

I’d also want pupils to apply this knowledge to some interesting problems. In elementary school, I’d look at opinion polls or other surveys as a way in to this, perhaps getting pupils to work collaboratively at coming up with good questions – agree / disagree Likert scales are a good starting point, and then exploring what they can learn by slicing the data they collect: is there any difference between boys’ and girls’ enjoyment of school subjects in elementary school (and is there any difference in high school…)? Later on, I’d start looking at time series: weather data is great for this. In the UK we’ve open access month on month meteorological data going back over 100 years, and a comparison of temperatures for the last 30 with the previous 70+ makes a persuasive case. Later still, I’d get pupils looking for patterns and relationships in big (or biggish) datasets: sports fans might like to play with accelerometer or GPS data from micro:bits, wearables or phones: can they work out what sport someone was playing from the datafiles (or a visualisation of them)? Could a machine do this? Big, public, anonymised datasets could be linked very powerfully to some social studies topics: what are the links between gender, ethnicity, education and income? Or pupils could learn about text mining techniques and apply these to their study of English: are there quantifiable differences between the vocabulary and grammar of Hemingway and Morrison? Or between Obama and Trump?

Even more importantly, I’d like pupils to think through some of the implications of collecting and using data as freely as we do. Coming back to my elementary school survey idea: what questions shouldn’t we ask one another? What questions shouldn’t we answer? Does it matter if your name is attached to the answers? In one day at school, how much data does a pupil generate (attendance, grades, cafeteria, accessing the internet, CCTV, online learning, behaviour management, etc…)? What happens to all this data? What could you discover about a pupil if this was all linked together? Does anyone mind? How much do internet service providers, search engines and email services know about a user? What do they use this for? Again, does anyone mind? If big tech firms provide the wonderful services they do for free, how have they got to be some of the most valuable companies in the world? The English computing curriculum includes teaching pupils ‘new ways to protect their online identity and privacy’ – what should we include here?

Some of this certainly should be part of what our pupils learn in their school computing lessons, but lots of it provides ample opportunity for cross curricular links, with math, social studies, civics and even sports! I think we as CS teachers gain so much through showing how relevant coding can be to the other things our pupils study.

Miles Berry
International Representative

Building a Pre-K to 12 Computer Science Program.

By Dan Blier, CSTA Board of Directors (District Representative)

It is that time of the year when we re-open our doors to our students for another school year.  With that in mind, this is a great time of the year to start thinking about what new computer science resources students will be introduced to this year.  As a district computer science curriculum specialist for Plano Independent School District in Plano, Texas, it is my role to work with teachers from Prekindergarten (Pre-K) through 12 grade to build a vertical computer science program. 

Building an equitable computer science program takes a great deal of planning and collaboration with others.  Input from teachers, campus and district administrators, parents, the District Board of Trustees, and community partners is an important part of this process.  The process requires taking a look at what resources are out there and digging into the state standards and CSTA Computer Science standards. 

For the past three years, we have been working in my district to develop a computer science program that will allow every student to have an opportunity to learn to code and prepare themselves for a career in computer science or that uses skills from the field of computer science. 

As we roll out new resources, we are constantly looking ahead to see what is our next step.  So far, this is what we have developed and what we have learned through this process.

Pre-K students have unique needs as many are not yet able to read or write.  We have decided to put Lego Coding Express in our early childhood campuses and elementary schools with Pre-K students.  Coding Express provides students with structured play while introducing some coding terms such as sequencing, looping, conditional coding, and cause and effect using some color-coded action bricks.

Our elementary schools are engaging students in coding during and after school.  Through our partnerships with the University of Texas at Dallas and other community partners, we are able to bring graduate students and professionals to our campuses after school at no cost.  During the school day, we are engaging students through interdisciplinary learning by combining computer science and math, science, social studies, and English language arts.  Resources like Code.org are great since they allow us to engage our bilingual students through the various translations available.  Last year, we created an Elementary Computer Science Cadre to help build this grade band of the program.  This group serves as voices on their campuses to help promote this program while helping us evaluate and develop curriculum over time.

Our Pre-K through second-grade students have been engaging with Blue-Bots.  Blue-Bots allow students to learn to code through the application of sequencing and looping.  We have placed Blue-Bot kits on all 47 elementary and early childhood campuses.  Our third through fifth-grade students are provided with more rigor by learning to code with Sphero SPRK+s.  These can be programmed using block-based and text-based JavaScript. 

We have purchased more Sphero SPRK+s for our 13 middle schools.  Initially, this is to provide our students with after school opportunities to learn to code or to engage students with coding through an existing class.  Having physical resources for students who are learning to code helps most students connect better with the concepts and see what the code does each time it is run.  Our goal is to introduce computer science courses to our middle schools in 2020-2021.  We are excited about adding a fifth year to our vertical high school program.

Our high school program is the most developed part of our program.  We offer on level, Advanced Placement, and International Baccalaureate at our various high school campuses.  Our computer science teachers are a very collaborative and supportive group of teachers.  Over the summer, our teachers work together to write the curriculum for these courses.  We schedule three full-day pullout days to continue the momentum throughout the school year.  Students have an opportunity to engage with our computing clubs that are very active in our region.  These clubs compete in Java programming competitions with peers from our neighboring districts.  Our three senior high campuses are known for bringing back trophies from these competitions.

Lots of work goes into building a district-wide computer science program.  We encourage you to check out the work our district is doing by visiting our website at https://www.pisd.edu/computerscience

Dan Blier
District Representative

Prayers, Meditations, and Reassurances

“Teaching is not a lost art, but the regard for it is a lost tradition.” – Jacques Barzun

This past Tuesday, the daily rituals my home had fallen into over the previous two or so months were interrupted. My wife’s alarm, sounding thirty minutes earlier than usual, was the marker that for the next ten months our lives would be changing into a different, but exciting routine. It was “back to school day” for Michele, a teacher and my wife, William, a 10th grader and our eldest, and Harper, a newly christened middle schooler and our youngest. Every day most of my deliberations and actions are for and with them. Maintaining their well-being always in mind, helps keep me grounded on those individuals that should be most important in my and other educational leaders’ work, students and teachers across our communities, states, nation, and globe. I once had a supervisor who would often say, “teaching is not a fallback position, it is first choice profession;” she was, and is still to this day, 100% correct. I wanted to use my blog posting this time to remind all of our wonderful teachers that they are in a profession that deserves high-regards, support, more often than not, increased compensation, and a regular “pat on the back.”

During a training that I participated in recently, part of the introduction/icebreaker activity included each of us drawing a card with a question that we were supposed to individually meditate on and then answer out loud for the group. The question I received was, “who was the best supervisor, professor, or teacher you ever had?” After thinking about it for a while, and remembering so many people who have been extremely influential during my life, my mind drifted back and focused on 10th grade and Mr. Jack Knight. Mr. Knight was my social studies teacher, but he was so much more. He was a great teacher, a true professional educator. As I consider his class now, from an educational leader perspective, I can confidently say he was a master of maintaining classroom discipline while engaging his students in their learning. However, beyond that, Mr. Knight, who had a family of his own, also took the time to get to know and appropriately befriend and mentor a young man who greatly needed it during that time of his life; if you need a hint, that young man was me. I will not go into my personal life, but just know that his extra time, deep caring, and daily demonstration of what being a good teacher and mentor should be, has had a profound effect on me to this day and probably been more influential in my life than he will ever realize.

As teachers, you all have an immense responsibility within your position of power. You have the responsibility to teach, but more importantly you have the opportunity to make a positive difference in the life of a child which will follow them into adulthood. I hope you will never forget these facts, and it is my desire that some who are not in the classroom will soon be reminded of it.

Tuesday morning as wife and boys left our driveway to embark on this year’s adventure, I said a short prayer. That prayer, which was for safety, a “good day,” meeting new friends, and connecting with a person who really needs it, was not only for the members of my family. It was for all students and teachers; it was for you! As you progress through these first few weeks of this new year, take heart in the words of Galatians 6:9.

Go make that positive difference that I know each of you can; I wish each and every one of you a phenomenal school year!

Anthony A Owen
State Department of Education Representative

Chapter Leadership Summit – 2019 CSTA Annual Conference

On July 7-8, chapter leaders from more than 60 CSTA Chapters came together for the Chapter Leadership Summit at the 2019 CSTA Annual Conference. This two-day event provided chapter leaders with educational sessions and specialized training on various topics. It also provided an opportunity for chapter leaders to meet and connect with CSTA Executive Director Jake Baskin, as well as the CSTA Staff and the Board of Directors. The Summit ultimately gave chapter leaders the opportunity to foster an exchange of ideas and information while also developing leadership skills.

Some highlights from the sessions at the Chapter Leadership Summit:

Opening Session and Q&A

In these sessions, CSTA Executive Director Jake Baskin and members of the Board of Directors reviewed the mission and goals of CSTA and summarized the future direction of the organization, all the while answering questions from chapter leaders.

Chapter Rubric and Chapter Self Assessment 

CSTA Director of Education Bryan “BT” Twarek introduced chapter leaders to the Chapter Rubric. The rubric will be used to help chapter leaders assess the areas of strength and growth for their chapter. Chapter leaders were given time to review the rubric and then an opportunity to discuss strategies and plans of action with other chapter leaders.

Chapter Finances and Chapter Grant Program

Michelle Page, CSTA’s COO, presented valuable information on Chapter Finances and the Chapter Grant Program. She provided details on how to manage chapter finances and discussed potential future opportunities to benefit from CSTA’s non-profit status. She also reviewed the criteria of the CSTA Chapter Grant Program, the types of programs and events that earn grant funding, and creating a plan for applying for the next round of grants.

CSTA’s New Web Platform & Chapter Marketing Success

Stacy Jeziorowski, CSTA’s Marketing and Communications Manager led two very informational sessions during the Summit. One of her sessions was dedicated to CSTA’s new web platform, Member Nova. Chapter leaders were presented with the features and advantages of using CSTA’s new web platform and had the opportunity to start their website onsite. In addition,  current chapters that have already made the transition to the new web platform spoke about their successes and ideas. Stacy’s second session was dedicated to Chapter Marketing. During this session, chapter leaders were introduced to the CSTA’s chapter branding guidelines, as well as had the opportunity to develop a simple marketing plan for their chapter that would increase their chapter’s digital presence. 

Chapter Fundraising

Daniel Rosenstein, CSTA’s Manager of Philanthropies and Community Partnerships, offered a session on leveraging the unique and creative ways that chapters can raise money while increasing brand awareness. Chapter leaders also had the opportunity to set an annual fundraising goal and create a plan to meet this goal.

Chapter Workshop-in-a-Box

Chapter leaders were introduced to the Workshops-in-a-Box by a team from NCWIT. The Workshop-in-a-Box session was designed to assist chapter leaders in offering timely and relevant professional development to their members, as well as offer strategies that could be implemented in their classrooms immediately.

Introduction to Grassroots Advocacy

In this session, chapter leaders received a crash course in grassroots advocacy, including how to talk to elected officials, build coalitions, and develop policy recommendations. Chapter leaders also learned about the Code.org Advocacy Coalition’s nine recommended state policies that expand access to computer science and why equity-based policies create better outcomes for all students.

Chapter Leader Networking

There were also several opportunities at the Summit for chapter leaders to network with other chapter leaders and hear about the incredible work that is being done in chapters across the US. During the Chapter Spotlight sessions, chapter leaders discussed relevant ideas and strategies on increasing membership, keeping members active/engaged, and hosting events that other chapters could try in their own chapters. The Leadership (Un)Conference sessions provided an opportunity for chapter leaders to suggest topic ideas that they wanted to discuss and connect with other chapter leaders with similar interests, challenges, or contexts. The Meetup Chapter Role session allowed chapter leaders to connect with other leaders who have similar roles/responsibilities and receive answers and support for problems/issues they’re experiencing.

Closing Session

Finally, in the closing session, chapter leaders had the opportunity to put the tools and resources they have gained throughout the Chapter Leadership Summit to use. Chapter leaders used this time to map out what their chapter hopes to accomplish over the next year.


This event could not have taken place without all the hard work of Chapter Relations Manager Leslie Scantlebury and her Chapter Leader Task Force.

Kristeen Shabram
K-8 Representative

The AP Reading

For the last week, I have been at the Advanced Placement (AP) reading for the CS Principles course in Kansas City, part of a few hundred readers that evaluate the performance tasks submitted by students. It’s an incredible experience in many ways!

For those new to the CS Principles course, it is a breadth-first introduction to computer science emphasizing creativity and collaboration across topics like data, the internet, and the impact of technology in addition to programming. With a goal of increasing access to and success in computer science for underrepresented students, the course is an engaging introduction to computing that reached almost 75,000 students in the 2017-18 academic year.

But 75,000 students means 150,000 performance tasks to grade! Each student submits a programming project and write-up, the Create performance task, and a computational artifact and write-up on a computing innovation, the Explore performance task. Along with 100+ readers in Kansas City and hundreds more grading tasks at home, we’ve been able to see the incredible impact this course has had on students.

The AP reading process includes training on student samples so that readers can grade the tasks using a rubric as consistently as possible. After that, the readers grade…and grade…and grade some more. We’re here in Kansas City grading performance tasks 8 hours a day – which can be grueling! – and then there are speakers and professional development options in the evening. But the readers are all very positive, excited about the work they see from students, and they play a key role in what makes this course a success.

As a college professor, I used to think grading was the worst part of teaching. However, this is different. There is a lot of value for someone who teaches the course in seeing the fine details of how the rubric is applied, common student misconceptions, and then using that knowledge to improve their instruction. And of course there’s the community. Where else besides the CSTA Annual Conference do you have the chance to connect with computer science teachers from across the country who are so passionate about bringing CS to all students?!

I leave Kansas City tomorrow in awe of the incredible work ethic as well as the care and consideration that teachers bring to the AP reading. The CS Principles course would not be the success it is without them.

Jennifer Rosato
Teacher Education Representative

Yes, It Really Is About K-12

Now that I’m retired (and busier than ever!), I often reflect on how I learned to love science and computing. Back then, then computing didn’t really exist – it was math. I remember a middle school math class where I had to figure out how to turn on and off red, yellow and green lights. That was probably my first programming experience but they called it logic. I remember other similar activities in middle school and high school such as when we acted out directions EXACTLY as someone had written. The thinking concisely and with order was great fun and challenging! I loved it before I went to college and through a variety of twists and turns in my academic life, I ended back at (now known as) computer science.

The recent exciting news of being able to visualize a black hole because of an algorithm developed by a team lead by computer scientist Katie Bouman has certainly captured my imagination. If you’ve had the chance to read more about Katie, she credits her love of computing from her high school experiences. In graduate school, she didn’t even know what a black hole was but once she got involved, she was hooked on figuring out how computing could capture all of the data and integrate this information from the many different telescopes to produce an image. “If you study things like computer science and electrical engineering, it’s not just building circuits in your lab,” she says. “You can go out to a telescope at 15,000 feet above sea level, and you can use those skills to do something that no one’s ever done before.” (https://www.cnbc.com/2019/04/12/katie-bouman-helped-generate-the-first-ever-photo-of-a-black- hole.html)

Encouraging more students to try computing is one of the reasons I volunteer my time working with CSTA. I believe it’s K-12 that guides us to identifying what we find challenging and rewarding. Another organization that I have worked with extensively is National Center for Women & Information Technology (NCWIT). While their primary focus is on girls and women in computing, many of their resources are applicable and valuable to all. For the K-12 audience, they have whitepapers with research references, podcast that are appropriate for high school students, tool kits which can help you organize events, great information in language that
everyone can understand, etc.


Some favorites include:


Communicating Research-based Interventions to Change Agents– to support the use of evidence-based interventions by change leaders;

Top 10 Ways to Engage School Counselors as Allies in the Effort to Increase Student Access to Computer Science Education and Careers – School counselors are eager to direct students to viable education and career opportunities. Consider these key points for collaboration as you
plan to meet with counselors to discuss ways their professional responsibilities align with your goals to increase student access to computing;

Computer Science Professional Development Guide – this computer science (CS) Guide not only empowers teachers, but also inspires students;

Computer Science-in-a-Box: Unplug Your Curriculum (2018 Update) – Computer Science-in-a- Box: Unplug Your Curriculum introduces fundamental building blocks of computer science — without using computers. Use it with students ages 9 to 14 to teach lessons about how
computers work, while addressing critical mathematics and science concepts such as number systems, algorithms, and manipulating variables and logic.

There are many many more resources of all forms that target the many facets of the K-12 world. The NCWIT website (NCWIT.org) has an easily searchable K-12 resource section. Take some time and take a look. I’ll bet you’ll find some interesting things.

We are lucky to be living in a time where computing plays such an important role in our daily lives. We’re even luckier to be able to help student learn just how cool computing can be!