Are You Ready for #CSTA2019?

I am counting down the days to the 2019 CSTA Annual Conference. How about you?

My countdown actually began at the start of the month when we held a special #csk8 Twitter chat about Getting the Most from #CSTA2019. Here’s some of the wisdom shared during and after the chat to help you make the most of the conference!

Why should CS teachers & teachers of CS attend the 2019 CSTA Conference?

For me, a CSTA conference is THE place to be because I don’t have to search the schedule for sessions that are CS related – they’re ALL CS related.

This will be the largest CSTA Annual Conference ever. Come & make history with us!

I think CS teachers & teachers of CS should attend #CSTA2019 because it’s a great opportunity to network. I always meet so many amazing educators at this conference and gain a plethora of resources to use in my classroom.

I went for the first time last year, and really felt like it was the BEST PD/conference I attended all summer. We have so much available freely and online, but there was just something AWESOME about connecting with other CS educators in person.

If you’ll be in Phoenix before Tuesday when sessions begin and you’re not attending pre-conference workshops or the Chapter Leadership Summit, what can you do to get your learning started and/or to network with fellow attendees?

Visit the exhibit hall on Monday afternoon and evening – yes, it’s open before the conference officially starts and during the conference, of course!

My favorite thing before sessions start on Tuesday are the Birds-of-a-Feather sessions on Monday evening – casual conversations with like-minded CS educators! Yes, you can go to these even if you didn’t register for any workshops.

Come early and earn a certification in the Certiport Lab which is open on Monday from noon – 5pm and during the conference, if you aren’t in Phoenix early.

Don’t forget the Welcome Reception on Monday evening starting at 5:30pm.

How do you choose from the 40+ sessions, 3 mini-session blocks w/8 minis, and 12 posters at #CSTA2019?

Posters are new this year. Definitely stop by these to see the amazing projects that CS teachers are doing in their classrooms.

Go for variety. Try some sessions that include ideas/topics that you may have never considered.

If you are attending with others from your school or district, split up and attend different sessions and share what you learned!

Use the filters on program to search by keyword for topics and grade levels.

I’m a planner and like to go through the program before a conference and make a list of all of the sessions I would like to attend and that apply to the grade levels I teach. I can’t possibly go to them all but I can use the list to check for resources that may have been shared later.

What suggestions do you have for networking and social activities after conference hours?

There will be a Whiteboard in the registration area where you can add after hour plans or see what others are planning and sign up if you’re interested in joining. Make sure to check it out!

Don’t be afraid to introduce yourself & to network with others. CSTA Conference attendees are the best! Ask around as to what is going on. Just do it!

Grab some peers to network and celebrate Taco Tuesday. It’s a great way to experience Phoenix like a local!

If you’re doing something with a group, invite someone new along.

Is there anything else you would like to share about getting the most from the 2019 CSTA Conference?

Make sure to exchange contact information with people that you meet at #CSTA2019 … maybe even bring a business card with contact information that you can hand out.

I LOVE learning about awesome, free curriculum available to all CS educators. We will have an incredible array of offerings for our kiddos right at our fingertips in the exhibit hall. The exhibitors do a great job showing off those tools!

Go up and say “hi” to people. Don’t be afraid to join a discussion!

Be sure to play the Conference Game. Not only will it be lots of fun but it will give you reasons to talk to people!

Don’t just sit with friends at meals. Find someone in a session you attend to have lunch with or ask to join others at a table.

There you have it … some crowd-sourced ideas to help you have a great CSTA 2019 Conference. I thank the #csk8 chatters for their ideas and their ongoing support of the #csk8 Twitter chat. I can’t wait to see them and all of you in Phoenix! If you’re not able to be there, make sure to follow all the fun on the #CSTA2019 hashtag!

Vicky Sedgwick K-8 Teacher Representative

Still Failing at Fairness

Equity – or the lack thereof – is a challenging thing to talk about. For people who recognize it’s a problem, it isn’t necessary to reiterate, because they’re already aware of the problem. People who don’t think it’s a problem tend to zone out – “this again?” – or be unconvinced.

Issues around gender inequity in schools first came to public attention in the mid 1990’s, when Myra and David Sadker published Failing at Fairness, which showed that girls were being subtly discriminated against in schools, even by well-intentioned teachers. Initially there was a lot of fanfare, and I remember teachers really thinking about trying to have more equitable classrooms. One of the major points of notice was inequitable participation in class discussions – the Sadkers really demonstrated that boys got called on more and got more teacher interaction than girls did. This is still happening, even after decades of teachers trying to be more equitable.

One interesting finding has to do with the perception of who talks more. A friend of mine kept track of who talked, during a discussion between her high school students. At the end of the discussion, she asked students who had talked the most, and everyone (boys and girls) agreed that it had been one girl. It turns out that nope, several boys had participated more, but no one perceived them as speaking as much as they had. This is backed up by research – people overestimate how much women speak and underestimate how much men speak in public.

A recent study looked at the interaction of gender and race in student participation in middle school classes. The headline “How White Boys Become Geniuses” is a hint to the findings. It stuck out to me because the findings are so similar to our perceptions of computer scientists. Sure, we all agree that girls can do it, but all our cultural references of geniuses are men, usually white men. From the article: “This research has broader relevance for explaining men’s dominance in fields that place a premium on what is perceived as “raw intelligence.” And it provides insight into how they gain entrance into the C-Suite. As one teacher said, “Jacob’s a full-package kid. He’s super nice, he’s brilliant and he’s a well-rounded kid. He likes sports and all this stuff . . . He’s going to be the next Elon Musk or something,” implying that Jacob, a white boy, is destined to become a CEO.”

It seems to me that it is even more crucial to overcome this tendency in computer science than it is in disciplines with less of an ingrained stereotype about who is a genius. The question is how? Twenty years of little progress suggests it is hard, but one way is to start by counting – count who you call on, count who calls out and how you handle it, count the number of complements you give students. In Better, Atul Gawande suggests that a fast and easy way towards improvement is just to start counting things you think need improvement, and go from there. What can you count?

Michelle Friend
At-Large Representative

The AP Reading

For the last week, I have been at the Advanced Placement (AP) reading for the CS Principles course in Kansas City, part of a few hundred readers that evaluate the performance tasks submitted by students. It’s an incredible experience in many ways!

For those new to the CS Principles course, it is a breadth-first introduction to computer science emphasizing creativity and collaboration across topics like data, the internet, and the impact of technology in addition to programming. With a goal of increasing access to and success in computer science for underrepresented students, the course is an engaging introduction to computing that reached almost 75,000 students in the 2017-18 academic year.

But 75,000 students means 150,000 performance tasks to grade! Each student submits a programming project and write-up, the Create performance task, and a computational artifact and write-up on a computing innovation, the Explore performance task. Along with 100+ readers in Kansas City and hundreds more grading tasks at home, we’ve been able to see the incredible impact this course has had on students.

The AP reading process includes training on student samples so that readers can grade the tasks using a rubric as consistently as possible. After that, the readers grade…and grade…and grade some more. We’re here in Kansas City grading performance tasks 8 hours a day – which can be grueling! – and then there are speakers and professional development options in the evening. But the readers are all very positive, excited about the work they see from students, and they play a key role in what makes this course a success.

As a college professor, I used to think grading was the worst part of teaching. However, this is different. There is a lot of value for someone who teaches the course in seeing the fine details of how the rubric is applied, common student misconceptions, and then using that knowledge to improve their instruction. And of course there’s the community. Where else besides the CSTA Annual Conference do you have the chance to connect with computer science teachers from across the country who are so passionate about bringing CS to all students?!

I leave Kansas City tomorrow in awe of the incredible work ethic as well as the care and consideration that teachers bring to the AP reading. The CS Principles course would not be the success it is without them.

Jennifer Rosato
Teacher Education Representative

Why the Responsible Computer Science Challenge Matters to You

A few weeks ago, a group of organizations (Omidyar Network, Mozilla, Schmidt Futures, and Craig Newmark Philanthropies) announced the winners of the “Responsible Computer Science Challenge.”   What is this challenge? It’s an initiative to integrate content about ethics and responsibility into undergraduate computer science curricula and pedagogy in U.S. colleges and universities – clearly a timely and important topic.

But in most cases, you as a reader of this CSTA blog are involved with K-12, not university, computer science education.   So why should the Responsible Computer Science Challenge matter to you? Three reasons:

  1. The materials produced will be designed for incorporation into technical computer science courses, including at the introductory level.   As the topic of ethics and social responsibility in computing has become more prevalent in university computer science education, initially much of that has been in standalone courses.   There’s nothing wrong with that – I sure hope not, I’m introducing such a course at my university next semester! But ethics will become far more fundamental to the mindset of computer scientists if it is an integral part of core, technical computer science classes, and this is exactly the approach that the Responsible Computer Science Challenge takes.   Many of the successful proposals address introductory classes. As such, they should produce materials and approaches that are relevant and helpful in K-12 computer science education as well.
  1. The outputs from the funded projects will be openly available.   A fundamental feature of the Responsible Computer Science Challenge has been the production of openly available materials, such as syllabi or class activities.   This will be done either by making these materials available online without restrictions, or where a license is involved, through use of a Creative Commons license.  Thus, a rich library of materials for K-12 and university educators to consider will be produced within the next 1-2 years.
  1. The quality is likely to be very high.   The competition in this challenge was stiff and the 17 award winners are a broad set with very high-quality experience and plans.   The breadth cuts across many dimensions: types of universities (community college, undergraduate colleges, research universities, public and private, small and large); types of curricular and classroom approaches (e.g. ethics exercises and assignments, role playing games, case studies); and the courses to be targeted (including introductory programming, algorithm design, AI, data science, cybersecurity and more).   

For more information on the Responsible Computer Science Challenge and the 17 award winners, see https://foundation.mozilla.org/en/initiatives/responsible-cs/challenge/ and https://blog.mozilla.org/blog/2019/04/30/2-4-million-in-prizes-for-schools-teaching-ethics-alongside-computer-science/.  

By Bobby Schnabel, Partner Representative

Yes, It Really Is About K-12

Now that I’m retired (and busier than ever!), I often reflect on how I learned to love science and computing. Back then, then computing didn’t really exist – it was math. I remember a middle school math class where I had to figure out how to turn on and off red, yellow and green lights. That was probably my first programming experience but they called it logic. I remember other similar activities in middle school and high school such as when we acted out directions EXACTLY as someone had written. The thinking concisely and with order was great fun and challenging! I loved it before I went to college and through a variety of twists and turns in my academic life, I ended back at (now known as) computer science.

The recent exciting news of being able to visualize a black hole because of an algorithm developed by a team lead by computer scientist Katie Bouman has certainly captured my imagination. If you’ve had the chance to read more about Katie, she credits her love of computing from her high school experiences. In graduate school, she didn’t even know what a black hole was but once she got involved, she was hooked on figuring out how computing could capture all of the data and integrate this information from the many different telescopes to produce an image. “If you study things like computer science and electrical engineering, it’s not just building circuits in your lab,” she says. “You can go out to a telescope at 15,000 feet above sea level, and you can use those skills to do something that no one’s ever done before.” (https://www.cnbc.com/2019/04/12/katie-bouman-helped-generate-the-first-ever-photo-of-a-black- hole.html)

Encouraging more students to try computing is one of the reasons I volunteer my time working with CSTA. I believe it’s K-12 that guides us to identifying what we find challenging and rewarding. Another organization that I have worked with extensively is National Center for Women & Information Technology (NCWIT). While their primary focus is on girls and women in computing, many of their resources are applicable and valuable to all. For the K-12 audience, they have whitepapers with research references, podcast that are appropriate for high school students, tool kits which can help you organize events, great information in language that
everyone can understand, etc.


Some favorites include:


Communicating Research-based Interventions to Change Agents– to support the use of evidence-based interventions by change leaders;

Top 10 Ways to Engage School Counselors as Allies in the Effort to Increase Student Access to Computer Science Education and Careers – School counselors are eager to direct students to viable education and career opportunities. Consider these key points for collaboration as you
plan to meet with counselors to discuss ways their professional responsibilities align with your goals to increase student access to computing;

Computer Science Professional Development Guide – this computer science (CS) Guide not only empowers teachers, but also inspires students;

Computer Science-in-a-Box: Unplug Your Curriculum (2018 Update) – Computer Science-in-a- Box: Unplug Your Curriculum introduces fundamental building blocks of computer science — without using computers. Use it with students ages 9 to 14 to teach lessons about how
computers work, while addressing critical mathematics and science concepts such as number systems, algorithms, and manipulating variables and logic.

There are many many more resources of all forms that target the many facets of the K-12 world. The NCWIT website (NCWIT.org) has an easily searchable K-12 resource section. Take some time and take a look. I’ll bet you’ll find some interesting things.

We are lucky to be living in a time where computing plays such an important role in our daily lives. We’re even luckier to be able to help student learn just how cool computing can be!

A Celebration of Arkansas Giants in Computer Science

In the past, I have typically used my blog space as a Computer Science Teachers Association (CSTA) Board Member as a place to advance policy or focus on initiative ideas. With this blog I will focus on the main purpose of CSTA, supporting computer science educators. On December 6, 2018 as part of the 2018 CS Education Week Announcements, Gov. Asa Hutchinson announced the creation of the Arkansas Computer Science Educator of the Year (CS-EOY) Award. During the planning and development of this award, we wanted this award to be on-par with the state’s Teacher of the Year award in terms of prestige and recognition.

My office launched the application request system on February 4, 2019 and over the next month we received 30 completed applications. The state’s #CSforAR / #ARKidsCanCode Computer Science Specialists, Jim Furniss, Tammy Glass, Kelly Griffin, Lori Kagebein, Eli McRae, Jigish Patel, Leslie Savell, and Zack Spink, under my facilitation completed the first level review. This review process, which focused on the overall quality of applications, each of which included a resume, letters of recommendation, and an applicant selected artifact; the applicant’s vision for and understanding of the value of computer science education for the current and future generations of Arkansas students; the applicant’s understanding of how their implementation of computer science education exemplifies quality teaching; and the applicant’s current and long-term impact on computer science education locally, statewide, and nationally, resulted in the selection of the five CS-EOY State Finalists:

  • Carl Frank; Computer Science Teacher – Arkansas School for Mathematics, Sciences, and the Arts; Hot Springs, AR
  • Josefina Perez; Business/Computer Science Teacher – Springdale High School; Springdale, AR
  • Brenda Qualls; Computer Science Teacher – Bryant High School; Bryant, AR
  • Kimberly Raup; Computer Science Teacher – Conway High School; Conway, AR
  • Karma Turner; Computer Science Teacher – Lake Hamilton High School; Pearcy, AR

Many of you probably recognize these names, as they have been significant members of the CSTA and greater computer science education community for some time both in Arkansas and nationally.

The second round review focused on the same criteria and was conducted by Anthony Owen, Arkansas State Director of Computer Science Education; Don Benton, ADE Assistant Commissioner of Technology;  G.B. Cazes, Metova Executive Vice President; Jake Baskin, Executive Director of Computer Science Teachers Association; Dr. Sarah Moore, Arkansas State Board of Education; and Sheila Boyington, Thinking Media/Learning Blade President/CEO.

On Thursday, May 2, 2019, Gov. Hutchinson held a press conference to recognize the work and selection of these five finalists. In addition, Gov. Hutchinson recognized Ms. Karma Turner as the 2018-2019 Arkansas Computer Science Educator of the Year. During the press conference, each of the finalists received $2,500 and recognition plaque. Ms. Turner received an additional $12,500 and a 2019 Computer Science Educator of the year trophy from Gov. Hutchinson. These awards were provided through funding from the ADE Office of Computer Science, which is a Special Project Unit formed to implement Gov. Hutchinson’s visionary Computer Science Education initiative. Arkansas is recognized nationally and internationally as leading the computer science for all education movement through Gov. Hutchinson’s #CSforAR / #ARKidsCanCode initiative.

For additional information:

Karma Turner’s NCWIT Aspirations in Computing biography may be read at https://www.aspirations.org/users/karma-118731

The Computer Science Educator of the Year award was announced by Gov. Hutchinson on December 6, 2018 as part of the 2018 CS Education Week Announcements: https://governor.arkansas.gov/news-media/press-releases/governor-hutchinson-ade-announce-creation-of-computer-science

The application process was announced by ADE Commissioner’s Memo on February 4, 2019, at http://adecm.arkansas.gov/ViewApprovedMemo.aspx?Id=3898

Anthony A. Owen
State Department Representative


AI is automated decision-making, and it accelerates century-old algorithmic methods

Abstract: Artificial intelligence (AI) is automated decision-making, and it builds on quantitative methods which have been pervasive in our society for at least a hundred years. This essay reviews the historical record of quantitative and automated decision-making in three areas of our lives: access to consumer financial credit, sentencing and parole guidelines, and college admissions. In all cases, so-called “scientific” or “empirical” approaches have been in use for decades or longer. Only in recent years have we as a society recognized that these “objective” approaches reinforce and perpetuate injustices from the past into the future. Use of AI poses new challenges, but we now have new cultural and technical tools to combat old ways of thinking.

Introduction

Recently, concerns about the use of Artificial Intelligence (AI) have taken center stage. Many are worried about the impact of AI on our society.

AI is the subject of much science fiction and fantasy, but simply put, AI is automated decision-making. A bunch of inputs go into an AI system, and the AI algorithm declares an answer, judgment, or result.

This seems new, but quantitative and automated decision-making has been part of our culture for a long time—100 years, or more. While it may seem surprising now, the original intent in many cases was to eliminate human bias and create opportunities for disenfranchised groups. Only recently are we recognizing that these “objective” and “scientific” methods actually result in reinforcing the structural barriers that underrepresented groups actually face.

This essay reviews our history in three areas in which automated decision-making has been pervasive for many years: decisions for awarding consumer credit, recommendations for sentencing or parole in criminal cases, and college admissions decisions.

Consumer credit

The Equal Credit Opportunity Act, passed by the U.S. Congress in 1974, made it unlawful for any creditor to discriminate against any applicant on the basis of “race, color, religion, national origin, sex, marital status, or age” (ECOA 1974).

As described by Capon (1982), “The federal legislation was directed largely at abuses in judgmental methods of granting credit. However, at that time judgmental methods that involved the exercise of individual judgment by a credit officer on a case-by-case basis were increasingly being replaced by a new methodology, credit scoring.”

As recounted by Capon, credit scoring systems were first introduced in the 1930s to extend credit to customers as part of the burgeoning mail order industry. With the availability of computers in the 1960s, these quantitative approaches accelerated. The “credit scoring systems” used anywhere from 50 to 300 “predictor characteristics,” including features such as the applicant’s zip code of residence, status as a homeowner or renter, length of time at present address, occupation, and duration of employment. The features were processed using state-of-the-art statistical techniques to optimize their predictive power, and make go/no-go decisions on offering credit.

As Capon explains, in the years immediately after passage of the ECOA, creditors successfully argued to Congress that “adherence to the law would be improved” if these credit scoring systems were used. They contended that “credit decisions in judgmental systems were subject to arbitrary and capricious decisions” whereas decisions made with a credit scoring system were “objective and free from such problems.”

As a result, Congress amended the law with “Regulation B” which allowed the use of credit scoring systems on the condition that they were they were “statistically sound and empirically derived.”

This endorsed companies’ existing use of actuarial practices to indicate which predictor characteristics had predictive power in determining credit risk. Per Capon: “For example, although age is a proscribed characteristic under the Act, if the system is statistically sound and empirically derived, it can be used as a predictive characteristic.” Similarly, zip code, a strong proxy for race and ethnicity, could also be used in credit scoring systems.

In essence, the law of the United States ratified the use of credit scoring algorithms that discriminated, so long as the as the algorithms were “empirically derived and statistically sound”—subverting the original intent of the 1974 ECOA law. You can read the details yourself—it does actually say this (ECOA Regulation B, Part 1002, 1977).

Of course, denying credit, or offering only expensive credit, to groups that historically have had trouble obtaining credit is a sure way to propagate the past into the future.

Recommendations for sentencing and parole

In a deeply troubling, in-depth analysis, ProPublica, an investigative research organization, showed how a commercial and proprietary software system is being used to make parole recommendations to judges for persons who have been arrested is biased (Angwin et al., 2016).

As ProPublica reported, even though a person’s race/ethnicity is not part of the inputs provided to the software, the commercial software (called COMPAS, as part of the Northpointe suite)  is more likely to predict a high risk of recidivism for black people. In a less well-publicized finding, their work also found that COMPAS was more likely to over-predict recidivism for women than men.

What was not evident in the press surrounding the ProPublica’s work is that the US has been using standardized algorithms to make predictions on recidivism for nearly a century. According to Frank (1970), an early and classic work is a 1931 study by G. B. Vold, which “isolated those factors whose presence or absence defined a group of releasees with a high (or low) recidivism rate.”

Contemporary instruments include the Post Conviction Risk Assessment, which is “a scientifically based instrument developed by the Administrative Office of the U.S. Courts to improve the effectiveness and efficiency of post-conviction supervision” (PCRA, 2018); the Level of Service (LS) scales, which “have become the most frequently used risk assessment tools on the planet” (Olver et al., 2013); and Static-99, “the most commonly used risk tool with adult sexual offenders” (Hanson and Morton-Bourgon, 2009).

These instruments have undergone substantial and ongoing research and development, with their efficacy and limitations studied and reported upon in the research literature, and it is profoundly disturbing that commercial software that is closed, proprietary, and not based on peer-reviewed studies is now in widespread use.

It is important to note that Equivant, the company behind COMPAS, published a technical rebuttal of ProPublica’s findings, raising issues with their assumptions and methodology. According to their report, “We strongly reject the conclusion that the COMPAS risk scales are racially biased against blacks” (Dieterich et al., 2016).

Wherever the truth may lie, the fact that the COMPAS software is closed source prevents an unbiased review, and this is a problem.

College admissions decisions

At nearly one hundred years old, the SAT exam (originally known as the “Scholastic Aptitude Test”) is a de facto national exam in the United States used for college admission decisions. In short, it “automates” some (or much) of the college admissions process.

What is less well-known is that the original developers of the exam intended it to “level the playing field”:

When the test was introduced in 1926, proponents maintained that requiring the exam would level the playing field and reduce the importance of social origins for access to college. Its creators saw it as a tool for elite colleges such as Harvard to use in selecting deserving students, regardless of ascribed characteristics and family background (Buchmann et al., 2010).

Of course, we all know what happened. Families with access to financial resources hired tutors to prep their children for the SAT, and whole industry of test prep centers was born. The College Board (publisher of the SAT) responded in 1990 by renaming the test to be the Scholastic Assessment Test, reflecting the growing consensus that “aptitude” is not innate, but something that can be developed with practice. Now, the test is simply called the SAT—a change which the New York Times reported on with the headline “Insisting it’s nothing” (Applebome, 1997).

Meanwhile, contemporary research continues to demonstrate that children’s SAT scores correlate tightly with their parent’s socioeconomic status and education levels (“These four charts show how the SAT favors rich, educated families,” Goldfarb, 2014).

The good news is that many universities now allow students to apply for admission as “test-optional”; that is, without needing to submit SAT scores or those from similar standardized tests. Students are evaluated using other metrics, like high school GPA, and a portfolio of their accomplishments. This approach allows universities to admit a more diverse set of students while evaluating they are academically qualified and college-ready.

What are the takeaways?

There are three main lessons here:

1. Automated decision-making has been part of our society for a long time, under the guise of it being a “scientific” and “empirical” method that produces “rational” decisions.

It’s only recently that we are recognizing that this approach does not produce fair outcomes. Quite to the contrary: these approaches perpetuate historical inequities.

2. Thus today’s use of AI is a natural evolution of our cultural proclivities to believe that actuarial systems are inherently fair. But there are differences: (a) AI systems are becoming pervasive in all aspects of decision-making; (b) AI systems use machine learning to evolve their models (decision-making algorithms), and if those decision-making systems are seeded with historical data, the result will necessarily be to reinforce the structural inequities of the past; and (c) many or most AI models are opaque—we can’t see the logic inside of them used to generate decisions.

It’s not that people are intentionally designing AI algorithms to be biased. Instead, it’s a predictable outcome of any model that’s trained on historical data.

3. Now that we are realizing this, we can have an intentional conversation about the impact of automated decision-making. We can create explicit definitions of fairness—ones that don’t blindly extend past injustices into the future.

In general, I am an optimist. Broadly, technology has vastly improved our world and lifted many millions of people out of poverty. Artificial Intelligence is presently being used in many ways that create profound social good. Real-world AI systems perform early, non-invasive detection of cancer, improve crop yields, achieve substantial savings of energy, and many other wonderful things.

There are many initiatives underway to address fairness in AI systems. With continued social pressure, we will develop technologies and and a social contract that together creates the world we want to live in.

Acknowledgments: I am part of the AI4K12 Initiative (ai4k12.org), a joint project of the Association for the Advancement of Artificial Intelligence (AAAI) and the Computer Science Teachers Association (CSTA), and funded by National Science Foundation award DRL-1846073. We are developing guidelines for teaching artificial intelligence in K-12. With my collaborators, I have had many conversations that have contributed to my understanding of this field. I most especially thank David Touretzky, Christina Gardner-McCune, Deborah Seehorn, Irene Lee, and Hal Abelson, and all members of our team. Thank you to Irene and Hal for feedback on a draft of this essay. Any errors in this essay are mine alone.

head shot of Fred Martin, chair of board of directors
Fred Martin, Chair of Board of Directors

References

Applebome, P. (1997). Insisting it’s nothing, creator says SAT, not S.A.T. The New York Times, April 2. Retrieved from https://www.nytimes.com/1997/04/02/us/insisting-it-s-nothing-creator-says-sat-not-sat.html.

Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica, May 23. Retrieved from https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

Buchmann, C., Condron, D. J., & Roscigno, V. J. (2010). Shadow education, American style: Test preparation, the SAT and college enrollment. Social forces, 89(2), 435–461.

Capon, N. (1982). Credit scoring systems: A critical analysis. Journal of Marketing, 46(2), 82–91.

Datta, A., Tschantz, M. C., & Datta, A. (2015). Automated experiments on ad privacy settings. Proceedings on privacy enhancing technologies, 2015(1), 92–112.

Dieterich, W., Mendoza, C., & Brennan, T. (2016). COMPAS risk scales: Demonstrating accuracy equity and predictive parity. Northpoint Inc. Retrieved from http://go.volarisgroup.com/rs/430-MBX-989/images/ProPublica_Commentary_Final_070616.pdf.

ECOA (1974). Equal Credit Opportunity Act, 15 U.S. Code § 1691. Retrieved from https://www.law.cornell.edu/uscode/text/15/1691.

Frank, C. H. (1970). The prediction of recidivism among young adult offenders by the recidivism-rehabilitation scale and index (Doctoral dissertation, The University of Oklahoma).

Goldfarb, Z. A. (2014). These four charts show how the SAT favors rich, educated families. The Washington Post, March 5. Retrieved from https://www.washingtonpost.com/news/wonk/wp/2014/03/05/these-four-charts-show-how-the-sat-favors-the-rich-educated-families/.

Hanson, R. K., & Morton-Bourgon, K. E. (2009). The accuracy of recidivism risk assessments for sexual offenders: a meta-analysis of 118 prediction studies. Psychological assessment, 21(1), 1.

PCRA (2018). Post Conviction Risk Assessment. Retrieved from https://www.uscourts.gov/services-forms/probation-and-pretrial-services/supervision/post-conviction-risk-assessment.

Teacher, Facilitator or Guide?

These past weeks I have been thinking about how Computer Science education and the way to teach it has evolved. I have been a teacher for about 19 years now, and most of the time my students make the most interesting questions that get me thinking and researching about certain topics. That is how this blog was conceived. I am currently teaching my 9th graders how to work with BBC Microbits. (By the way, Microbits are awesome!) To introduce them I start giving them instructions that are very detailed about how the Microbits work and to get acquainted with the Make Code interface. When I say detailed, it is very detailed. I give them a step by step guide including screenshots of where to find the necessary blocks, how to save, download the program and upload it to the Microbit. How to use the Microbit simulator included in the Make code interface. Once we do several projects in which we learn how to make the Microbit sing, how to work with the LED screen and how to connect alligator clips, I assign a project in which they have to come up with a character and incorporate the Microbit as part of it adding at least 2 actions with it. That’s when it all goes south!!!!

Many kids seem lost. It’s like they have never used a Microbit before. That got me thinking. When I started learning programming, I learned using Pascal with a green and black screen and all programming was text based. It was hard!!! But I also remember a professor telling us that if we learn the hard way then after any programming language should not be as hard to learn as we had the base and logic to programming. At the time I really hated that comment as any student would’ve but today as a teacher I wonder if I am up to something here. Am I, as a teacher, allowing my students to really think on their own? To really grasp the logic of creating a program. Or are they just little robots following my instructions?

I decided to analyze the progression of my students to get to ninth grade Computer Science. Throughout their early years we want to engage them and get them to like and be interested in Computer Science and all the possibilities they have with it. As we introduce them to all the wonderful things that we can achieve with Computer Science, we look for tools that are engaging and fun. Many companies have helped produce such introductory tools, which make it so easy for kids to learn that they start enjoying programming. However, they get so used to it that then the progression to more complex programming seems harder. Emphasis on “seems”. Making the transition from block programming to text programming is set by many of these tools, including the Microbit. The Microbit can be programmed using blocks, JavaScript or Python so that is covered. But there is an element that only teachers can do and it is to facilitate the transition between just giving guidelines that are so specific that it seems students are only copying a program while truncating their creativity and promoting the ability to create and discover on their own or by giving a task for them to solve on their own. I realize that although I am teaching Computational Thinking skills my kids are used to getting very specific instructions for programming. This is not bad it’s just that the transition is not as seamless as it seems. So how should the transition take place? I believe a good starting point is to be cutting on the screenshots on the instructions guide and limit them to the instructional part of the lesson, by going through the steps with them and let them take their own notes. Then when a project is assigned, they can take a look back at their notes as a reference. Another tip is to include videos as additional help but getting away from giving too detailed step by step instructions starting in the Middle School area so that when presented with these kinds of projects in High School, they have a base on how to solve them. Let the instructions be a guide and not a solved problem for them to copy.


Michelle Lagos
Representative at Large



Introducing Cybersecurity Concepts in the K-12 Classroom

As a Career and Technical Educator, equipping students with career-readiness skills, like communication, problem-solving, and collaboration, is my first-order priority in the classroom. While these skills focus on preparing students to be successful in the workforce, we as educators have an increasing responsibility to prepare our students to be safe, respectful, and responsible digital citizens. Digital citizenship can be broadly understood as membership and participation in an online community, such as the internet or its various sub area. In this way, being a “good” digital citizen means, as the Digital Citizenship Institute defines it, having “norms of appropriate, responsible behavior with regard to technology use” [1].

One key behavior in the set of good digital citizen norms involves taking sufficient precautions to foster strong personal and community digital security. This goes far beyond telling your students to not talk to strangers online or to not share their personal information on social media sites. Students need to understand the kind of information that is being passively collected from them when they visit or create accounts on websites and what value it has to them, those that want to collect it, and potentially others if it gets leaked or released. Understanding the potential threats that they might face when sharing personal information on any website, including social media sites, is also important. As an example, I’ve taught many students that didn’t know that their photos contained geotags (longitude and latitude numbers) that could be used by attackers to figure out where they live or places where they frequent. Finally, equipping students with the skills they need to be able to identify potential attacks and avoid being a victim of scams, such as phishing and identity theft, is also paramount.

Even if you see the value of digital citizenship preparation in your classroom, you may feel like you don’t know where to start or how to tie topics like security and online safety into your existing curricula. Don’t worry! There are many online resources that can help. First decide what cybersecurity concepts you want to teach in your classroom. You can find lists of topics online ranging from social media safety to types of malware to password complexity. The bottom line is there are plenty of lessons and curriculum to choose from. You can even choose to integrate a single lesson, a module made up of several lessons, or even a whole semester or year-long curriculum. To help you move forward, I have listed some of the resources that have helped me along the way as I have integrated more cybersecurity concepts into my classroom.

Cybersecurity Curriculum

This curriculum was designed by a friend of mine for a high school computer science course with a focus on cybersecurity. I really like how his curriculum design is customizable. The activities that he provides can be single one-day lesson or a complete semester course. You can take a look at https://derekbabb.github.io/CyberSecurity/

Common Sense Media

Commons Sense Media provides a complete K-12 Digital Citizenship Scope and Sequence. Privacy & Security is one of the topics they focus on and there are a variety of lessons on various cybersecurity topics. I really like how topics are introduced in the K-2 grade band and then expanded on in higher grade bands. Find more at: https://www.commonsense.org/education/scope-and-sequence

UNO GenCyber Modules

I had the opportunity last summer to teach at a GenCyber Camp hosted by University of Nebraska at Omaha. This camp provided several modules that span a variety of cybersecurity topics. The modules are available online at www.nebraskagencyber.com and have a creative commons license. (Side note) If you’ve never attended a GenCyber Teacher Camp, you should check to see if one is being offered in your state.

Other Resources:

CodeHS Cybersecurity Course – This entirely web-based curriculum is made up of a series of learning modules that cover the fundamentals of cybersecurity. You can take a look at https://codehs.com/info/curriculum/cybersecurity

Cybersecurity Nova Labs – This Cybersecurity Lab is a game that allows players to discover how they can keep their digital lives safe and develop an understanding of cyber threats and defenses. You can take a look at https://www.pbs.org/wgbh/nova/labs/lab/cyber/

CyberPatriot – ​​​​The National Youth Cyber Education Program created by the Air Force Association (AFA) to inspire K-12 students toward careers in cybersecurity. You can look at it https://www.uscyberpatriot.org.

Citations:
[1] http://www.digitalcitizenship.net/nine-elements.html

I

This image has an empty alt attribute; its file name is headshot-264x300.png

Kristeen Shabram
K-8 representative


Announcing the 2019 CSTA / Infosys Foundation USA Teaching Excellence Awards

  • “For years I never thought I was good enough”
  • “I wonder…am I doing this right”

These are quotes from our 2018 CSTA / Infosys Foundation USA teaching excellence award winners. A group of teachers that have not only made an outstanding impact within their own classrooms but also started new district wide programs; built engaging, strident led, inter-school partnerships; and lead the team revising the AP CS A exam! The truth is that even the most effective teachers find themselves facing doubt. Teaching is a HARD job, especially as a computer science teacher.

CSTA is here to make sure we take time to recognize the amazing work that’s happening in computer science classrooms across the country. This week we launched the application for the 2019 CSTA / Infosys Foundation USA Teaching Excellence Award with a few updates:

  • The application is split into two parts, making it easier to apply, and only requiring additional steps, like letters of recommendation after an initial review. We hope this will encourage more teachers to apply before that self doubt we all have creeps in.
  • We’ve doubled the number of awards, because there are so many outstanding teachers and we want to acknowledge them all.  Starting this year there will be five winning teachers and five honorable mentions.
  • You can now nominate a great teacher, encouraging them to complete the application and letting them know that you think they are an excellent computer science teacher.

The first round of the application is open through April 14 and shouldn’t take more than 45 minutes to complete. For more information and to apply now visit the award page.


Jake Baskin
Executive Director CSTA