Developers’ Club Resource Platform & Clean Computing After-School Programs

Submitted by Emily Peed

Emily is an undergraduate college student and an entrepreneur. She has a strong interest in creating open source technologies, educational technologies, and pushing a movement of a cleaner form of computing. She is currently looking to build her resource platform at to help provide higher quality and more accessible technology resources. She is seeking dedicated, self-motivated volunteers to help. She currently attends online school through the University of Southern New Hampshire for Game Development and Design.

Developers’ Club is working to become an Open Source resource platform. I started this program as an after-school program during High School. During my time in High School I became involved with NCWIT, or the National Center for Women and Information Technology. Through them I was able to obtain the AspireIT Grant in college, which was a grant that focused on increasing female participation rates in technology at the middle school level. Through the grant I ran my first set of afterschool programs. It was a 3 site program that ran for most of the 2013 – 2014 school year, ending with a catered banqueted awards ceremony. During its duration it exposed 60 girls, and 64 students total, to hundreds of hours worth of technology education.

Developers’ Club is working to become the one stop shop for technology education by offering free modular tutorial series, structured learning content, source code downloads, 3D Printed/Raspberry Pi based hardware kits, and tools for student, teacher, and parent use. It is gearing up to encompass all K-12 education. Alongside our resources, we are also creating deployable after-school programs. Our platform is going to take a few years to build, but as we hopefully gain community support we will see our resources grow faster. We are gearing up to release our programs again in February of 2015 for a 16 week testing period, before resuming our normal year long duration for the 2015-2016 school year. Students are not required to participate for the entire year, we just want to offer a space year round for students who may have to juggle responsibilities to other after-school
obligations and programs.

Aspects of this program are under development, but if you go to, you will be able to see our dates for release of content, our campaign to create our imaginative and educational kits, and other important information about contributions, donations, and even possible sponsorships of the Developers’ Club platform and the associated programs. It also contains information on what is required to start an after-school program, the responsibilities of those who choose to execute the after-school programs, and other general program information. The program is set up to be an umbrella program, meaning we offer a wide variety of programs.

We will have programs that focus on increasing female participation and general participation rates in technology. Our after-school programs will be kicking off in February 2015. One of our more innovative programs, however, will be released over the Summer of 2015 and this will take a focus on clean computing.

The program is set to run for four months. Over the four months, participants will learn how to program, work with and assemble their Raspberry Pi based weather station or simple solar panel, gain insight into the computing industry when it comes to production, use, and disposal methods. They will also learn about the environment, renewable energies, and what the future could look like with a cleaner form of computing. The after-school programs are built to run for four months; however, due to the modular style of our resources the program can be expanded and contracted to meet different school and after-school facility needs. Students would primarily spend their time learning about technology, programming, and if they have purchased a hardware kit they would work on building that.

For our after-school programs we end with a celebration! There is an end of the program awards ceremony where students receive certificates, recognition, and celebrate their accomplishments and participation in the program.

To elaborate on the term “clean computing,” there is a need for computing to become more biodegradable, renewable, and environmentally friendly. We have issues with the handling of E-Wastes, production, and energy consumption issues within computing that are only going to compound as technology becomes more integral to our lives. In the United States, which we are believed to be the largest producer of e-waste in the world, has been estimated that well over one hundred million computers, monitors, and televisions become obsolete each year. This trend is just growing year by year. E-Wastes consist of small and large appliances, batteries, technology, etc. Technology accounts
for more than half of this E-Waste, however, as much as 57%. The United Nations estimates that the world total generates twenty to fifty million tons of E-Waste each year.
We are improperly disposing of them when we do take the time to do so, which is only roughly 13% of the time. Improper recycling methods in China of E-Wastes, let me draw attention to the word improper, has left the ground spiked with toxicity due to higher levels of heavy metals and other chemicals caused by the uncontrolled acid discharge.

China is just one of the many countries who are experiencing damage from our E-Wastes.
When it comes to the production of computing we have other countries in Asia such as the Philippines, Hong Kong, Indonesia, Pakistan, Malaysia, and Vietnam becoming targets for dumping E-wastes. There has also been targeting in Africa as well, Nigeria, Kenya, Senegal, and Ghana are becoming the latest targets for dumping of these wastes generated by more advanced economies with stricter environmental regulations.

E-Wastes contain brominated flame retardants that are used in to print circuit boards,
connectors, covers, and tablets. These are found in high concentrations above improperly ran E-waste recycling sites in China, and areas like it, and can house exceedingly high concentrations of chemicals like polybrominated biphenyls and polybrominated diphenyl. These can be responsible for increased rates of breast, cervical, and uterine cancer in women; as well as, create serious developmental issues for males and females which include sexual, skeletal, and mental developmental issues when they are found in highly concentrated levels.

Computing manufacturing has a negative impact on the environment, the precious materials used to produce our computers, phones, tablets, and other electronic devices alone are very taxing. It has been said that making a computer is as resource intensive as making a refrigerator or a car. For example, the water that is used in computing has to be incredibly sanitized and it takes a lot of it. Microchips have to be cleaned and sanitized with each layer that is etched into them. With some of these crevices being smaller than a wavelength we have to utilize ultra clean water because even the smallest mineral is cumbersome on that chip. This is done with highly clean water, called Ultra Pure
Water (UPW), that is actually not recommend for human consumption because it can strip minerals from the body. It has to be dirtied before being placed back in the water supply, if it is not recycled and reused by the plant.

We are not getting the most from our resources when it comes to computing. There are so many who are uneducated about the boxes under their desks and the devices that run their life. Often times, when an inexperienced user has a simple hard drive failure or something go wrong there are many who just ditch their old system and purchase a brand new one. This pattern stands to why we need to include more technology educational programs in schools. Why we need to see its integration into the core curriculum, and other alternative institutions, so people can be more informed about their greatly needed devices and how to maintain and care for them properly. The internet alone consumes massive amounts of electricity every year. The internet is primarily fueled on the backbone of coal and oil energy and is thus making our most pervasive accessibly knowledge tool since the Gutenberg press a contender for environmental damage.

To put this in further perspective, Greenpeace is estimating that by 2020 our data centers will demand more electricity than is currently demanded by France, Brazil, Canada, and Germany combined. It seems that our thirst for knowledge has led us to create an energy chugging monster of mammoth proportions.

Data centers and the processing of data, which is exponentially skyrocketing alongside our ability to process data, like a Moore’s Law of data generation alongside processor speed will only see this problem compound as more people hop onto the internet and start to use it in their daily lives as technology becomes globalized.

We are at an interesting time in technology and society. We need more professionals in this field to combat the growing need for the development of technological tools and resources. We are at the crossroads of decisions that we can make to transform technology to become more sustainable for our future while teaching people to properly use it, not just slam code on the board and tell them “this works.”  We can use this powerfully encompassing tool to continue achieving a higher quality of life and making it more effective. We can do this through educating younger and current generations about computing, getting them excited about what the future holds with a form of green and sustainable computing in the meld, make them realize what their impact could be by their participation, and teach them the skills necessary to execute their plans for the betterment of computing technology for the future. We have to inform those around us of the production, disposal, and energy consumption dilemmas in computing in order for it to continue to be our most effective tool yet.

Written By: Emily Peed

Article Links: