Why You Should Care About CS Policy

If you’re reading this, it means that you are a dedicated teacher who cares about CS education.  You might not think about policy very much, but it can have a big impact in broadening participation in CS in your state.  Here are a few reasons why policy matters.

Establishing CS as a Core K-12 Subject Area.  

NH and many other states have MS and HS technology program requirements.  These programs are a mixed bag – many are primarily digital literacy, but a lot of schools are incorporating coding, makerspaces, robotics, and other experiences that are very much a part of CS education.

At the HS level, there are Career / Technical Education (CTE) programs in the Engineering and Information Technology clusters that are related to CS.  These are good programs, but they are for 11th and 12th grade students who already plan to go into IT or Engineering.  We know that this is too late for equity.  

Establishing K-12 Computer Science standards that are distinct from CTE program standards signals that CS is a core subject for ALL students, and helps tie the CS-related experiences mentioned above into a cohesive whole.   Core K-12 CS provides a pathway into the CTE programs above and others, for example: Business / Financial Operations; Healthcare Technology; and more.  

Getting Reliable Data and Using it to Make Improvements

In NH, certification, standards, and funding are all linked.  Each certification area has a linked set of academic standards.  This is how courses are identified in our state information systems.  Since our K-12 standards and certification are brand new, we have a big push to recertify current CS teachers and reclassify courses.  This will give us a new lens into CS education across the state.  

When we have opportunities to utilize state and federal funds to advance our objectives, we rely on this data to target our programs and achieve the greatest impact.  We need to define CS and identify CS so that we can be smart about expanding and broadening participation.

Growing the Pool of CS Teachers

Our certification rules are linked with the program approval standards for teacher preparation programs.  This means that with our new K-12 CS certification we now have the opportunity to establish programs that lead to certification as a CS teacher.

The rules are also a guideline for teachers who teach some CS, to take the plunge and become a “full-fledged” CS teacher.  Our certification program is competency-based, so educators can acquire the necessary skills and knowledge through a number of means.

You Can Help

Is there a line of communication between your CSTA chapter and your State Education Agency?  Find out what they’re up to and what you can do to help.  We all need to work together to make CS for All a reality.

Check out the CSTA Advocacy Menu for some ideas for CS Education Week, Dec. 4-10, 2017:

For more information on state-level K-12 CS policy, please check out these documents:

 

David Benedetto
At-Large Representative

Reading Stories in Computer Science Class

Stories are an entertaining way to introduce or reinforce computer science concepts and help students to understand abstract concepts in a more concrete way. Do you read picture books, chapter books, or short stories to your students in computer science classes? I do. The easiest way to get started is with books that are specifically written to teach CS concepts.
For 5-8-year-olds, Hello Ruby: Adventures in Coding by Linda Liukas is a wonderful place to start. Written to introduce young children to computing, it is a picture book about a “small girl with a huge imagination.” As Ruby goes on adventures, students learn about planning, sequences, algorithms, collaboration, conditionals, loops, and more. The book includes activities that go along with the story, and the official website has resources for educators. Linda Liukas has also written a second book, Hello Ruby: Journey Inside the Computer, which includes activities about the internal parts of a computer.
A graphic novel for 8-12-year-olds that covers multiple CS concepts is Secret Coders by Gene Luen Yang and Mike Holmes. It is the first in a series of books that combine logic puzzles and coding (in Logo) wrapped up in a mystery storyline. The official website has downloadable activities and Logo instruction videos so your students can code along with the characters if desired. Check out the excerpt on the website for a fun introduction to binary. The concepts in the book can easily be applied to any programming language you are using with your students.

The comic book, The Cynja, by Chase Cunningham,‎ Heather C. Dahl, and Shirow Di Rosso was written for younger children, but I like it for introducing Networks and Cybersecurity for Middle School students. The Cynja is a story of a battle between the evil forces of cyberspace and the Cynsei and his apprentice, the Cynja. Code of the Cynja, the second comic in the series, has a female lead character. These are difficult to get in print, but digital versions are available on Amazon and in the Google Play Store.

Don’t limit yourself just to books written about computer science concepts. Working on decomposition skills? Read a “Choose Your Own Adventure” book. Then work with students to decompose it and build a decision tree. Talk about how conditionals allow it to work and have students create their own “Choose Your Own Adventure” program. The Fly on the Ceiling by Julie Glass is a fun book to introduce the coordinate plane. After reading it, students could create a Scratch project to draw their initials using glide commands with x and y coordinates. Read The Very Hungry Caterpillar by Eric Carle and have students retell the story with Bee-Bot or write a ScratchJr project about the life cycle of the butterfly. Look around and see what books are available at your school and find ways to use them in your computer science classes.

Are you reading stories to students in your computer science classroom? We would love to hear about it!

Vicky Sedgwick K-8 Teacher Representative

Use the SCRIPT to Develop Your District’s Own #CSforAll Plans

Individual teacher and school champions have enabled participation in K-12 computer science education to soar to new highs in recent years. However, true systemic change will occur when school districts across the nation create their own #CSforALL goals and implementation strategies. There is a need for districts across the nation to develop comprehensive and equity-minded plans to ensure that all students across all schools can access and achieve in computer science.

Creating these plans can be daunting, especially at early stages of implementation and when there are important competing priorities. It can be tempting to simply replicate plans that other districts have adopted, yet contexts may vary greatly from one district to another, making a single correct answer difficult. Districts should leverage local strengths and consider their unique contexts when developing their plans.

The CSforALL Consortium, a key partner of the CSTA, recently developed a tool to help with this challenge. The new tool is called the SCRIPT: School CSforALL Resource and Implementation Planning Tool. The SCRIPT engages school districts in reflection, review of examples, and goal setting related to six areas: (1) Leadership, (2) Technology Infrastructure, (3) Teacher Capacity, (4) Curriculum and Materials, Selection and Refinement, (5) Partners, and (6) Community.

The SCRIPT is still under development; however CSforALL has released rubrics for Leadership, Teacher Capacity, and Curriculum & Materials, Selection and Refinement. Recently, I helped facilitate a breakout session at a SCRIPT workshop held at the CSforALL Summit in St. Louis. Based on this experience, I believe the SCRIPT is useful for districts that are just getting started, as well as those that have already implemented their comprehensive plans, as there are many distinct elements and a wide continuum of success. The tools promote excellent reflection and conversation and help guide teams towards meaningful next steps.

Here is a suggestion for how to use the SCRIPT:

  1. Convene a leadership team from your local district to develop or update plans to support #CSforALL. Include teachers, principals, curriculum leaders, and district administration; where possible, include representatives from both early-adopting schools and schools that have yet to begin to implement.
  2. Together, focus on each of the six SCRIPT categories one at a time. Use the rubric to reflect on the current status, identify priority areas, and set goals. Consider setting three goals for each area of the rubric: one 3-month goal, one 6-month goal, and one long-term goal.
  3. Use the tools and examples in the SCRIPT, as well as other CSTA resources and CSforALL members, to help plan how you will meet these goals. Feel free to reach out to your local CSTA chapter to ask for advice and support.
  4. Reconvene periodically to monitor progress and update goals.

Creating meaningful and systemic change certainly does not come easily. Accordingly, you won’t find a list of answers within the SCRIPT. However, you will find many thought-provoking questions and topics for conversation. Use these to consider the big picture and develop plans for rigorous, inclusive, and sustainable K-12 computer science education in your local school district.

SCRIPT Cover

Bryan Twarek
School District Representative

Designing Computer Science Classrooms

Computer science is being taught in all kinds of classrooms across the country, not just in computer labs. As more schools increase their computer science offerings and look to dedicate space to those classes, teachers are faced with the question: What should a computer science classroom look like?

In CS teacher professional development, we discuss how to make sure that all students feel welcome in the classroom, including the physical environment itself. NCWIT has a great resource, How Does the Physical Environment Affect Women’s Entry and Persistence in Computing?, that identifies how underrepresented students are impacted by posters and other images that reinforce stereotypes about computing. For example, images that associate “geek” with CS (Star Trek, a lone coder in the dark, etc.) or that call attention to the need for more women, can have a negative impact. Instead, consider using imagery like the new set of posters from NCWIT and Careers With Code, which show a variety of role models using computer science to pursue a personal passion or change their world. The goal should be to select images that appeal to all students and showcase a variety of people.

Working with K-12 teachers, I’ve had the opportunity to see many different types of CS classrooms. Sometimes the computers line the perimeter of the room, facing the wall but making it difficult for some students to see the teacher and their computer at the same time. Some rooms have rows of computers where it’s easier to see the teacher but often difficult to walk around easily. And some are regular classrooms that rely on a laptop cart. All of them have their advantages and disadvantages; the goal is to have a physical space that supports effective teaching.

The college I teach at is also looking to redesign one of our computer labs dedicated to CS courses, with a focus on supporting student collaboration. As more and more of our teaching relies on collaborative and cooperative learning activities such as pair programming, POGIL, debate team carousels, etc. the traditional classroom with rows of computers does not work well. So, we are examining ways to implement flexible classroom arrangements with tables and chairs on wheels that can be easily switched into another configuration. With these types of activities we move from a “guide on the side” model of teaching to more of a “sage of the stage” model and have less need for a large, central area with whiteboards and projection screen.

These types of considerations for the physical design of CS classrooms also directly support practices described in the CSTA K-12 CS Standards, specifically the practices of Collaborating Around Computing and Fostering an Inclusive Computing Culture. So, what would your ideal classroom to teach computer science in look like? How will it support collaboration and make sure that all students feel like they belong?

Jennifer Rosato


Jennifer Rosato
Teacher Education Representative