About Aman Yadav

Dr. Aman Yadav is an Associate Professor and co-director of the Masters in Educational Technology program at at Michigan State University. He works on issues around computational thinking, computer science education, and problem-based learning in K-16 classrooms. Over the last decade, Aman has led professional development workshops at the national and international level to engage teachers in embedding computing ideas and technology in the classrooms. Aman serves on the Computer Science Teachers Association (CSTA) board of directors. Follow him on twitter at yadavaman

Choosing a computing major

Teachers are an important resource for students when it comes to their college decisions. Indeed, undergraduates students often state that a high school teacher influenced their decision to become a computer science major. This blogpost includes a number of  for CS teachers to help their students learn about computing related majors. It might also help teachers recruit students in their computer science courses and highlight the breadth of majors available for students. Along with my colleague Susanne Hambrusch, we have developed the following list of resources for computer science teachers as a part of our NSF-funded PD4CS project.

There exists a range of four-year computing and computing-related degrees a student can pursue. It can be daunting to determine differences and commonalities.

Four-year Liberal Arts Colleges will typically offer one degree, most likely in Computer Science. The simplicity may have a drawback: the number of courses offered may be small and few opportunities for specialization may exist. On the other hand, many liberal arts colleges provide a strong computer science education that is often combined with flexibility, allowing students to take diverse courses in other areas.

Large, research-oriented schools tend to offer multiple computing degrees. The types of degrees and specializations offered are often influenced by whether Computer Science is in a College of Science, a College of Engineering, or in its own College (e.g., College of Computing, School of Information).

Most schools provide information and guidance for incoming students. For example,

Many rankings of computer science programs exist. No ranking is perfect and many schools not ranked or not ranked highly can provide an excellent undergraduate education. The US News and World Report rankings have a good reputation and are respected by universities and colleges. They rank different types of institutions, different research areas, different geographical regions, and more.

Students majoring in a STEM field often consider getting a minor in Computer Science. Having a CS minor will give them additional and often attractive job opportunities after graduation. A minor typically consists of 5-6 CS courses (the student is expected to have the appropriate math courses).  Students majoring in math or physics can often double count courses and may be able to complete a minor with less effort.  Guidelines and expectations differ and a student needs to find out the details for the particular program.

************************************************************************************************************
Aman Yadav is an associate professor in the College of Education at Michigan State University. He serves as the teacher education representative on the CSTA board of directors. Follow Aman on Twitter @yadavaman

Designing Thinking in K-12

During my recent trip to India, I visited the American Embassy School (AES) in New Delhi. During my visit, I was able to talk to the members of the technology integration team and how they are combining design thinking, computational thinking, and maker space ideas to allow students to become creative users of computing technologies. More on AES tech vision can be read here. While computational thinking in K-12 schools has gotten a lot of attention, design thinking has the potential to further enhance students’ creative problem solving.

The Institute of Design (d.school) at Stanford University offers a virtual crash course that exposes learners to the five aspects of design thinking: empathize, define, ideate, prototype, and test. Teachers interested in learning more about how to embed design thinking in their K-12 classroom can find more resources on the d.school’s K12 lab network wiki.

Accessibility in Computer Science

During January 23-24, 2015, I attended an AccessComputing meeting (Alliance for Access to Computing Careers) that focused on ways to increase participation of students with disabilities in computing courses. As an educator, it was a useful meeting where I learned not only about the importance of focusing on meeting the needs of EVERY student, but also about the useful resources AccessComputing provides for CS educators. Richard Ladner, who leads the alliance makes a strong argument for why we should support all students stating, “when more citizens have access to computing opportunities, and when computing fields are enhanced by the perspectives of people with disabilities, we all benefit.”

AccessComputing offers a number of resources and tools that educators could incorporate in their classrooms. The website has resources on how to web pages accessible by following these 30 accessibility tips and how to apply the principles of universal design to make sure computing facilities are accessible. If you have students who need accommodations in your classroom, visit AccessComputing accommodations section to “find tools and resources for assessing the accessibility of your lab or department and developing accommodation strategies”. Another useful resources is the knowledge base, where you can learn about specific disability related issues.

 

 

Assessing Computer Science Education

With the current national focus on making computer science (CS) count as a high school math or science credit or as core admissions credit for colleges and universities, the first step is to examine CS assessment landscape in K–12 education. In particular, it is imperative to conduct a landscape study on how the key players (teachers and CS education researchers) utilize assessment in their work. As more and more states adopt CS as a requirement, quality assessment will be a necessity that not only measures knowledge, but also assess student conceptual understanding. Currently, the quality and state of computer science assessment is generally unknown and opinions differ on what is available to the K–12 community at a cost effective rate (or free) and is easy to implement and access. Furthermore, the open-ended nature of computer science tasks makes it imperative that assessments are carefully developed and they fit the philosophy of open-ended algorithmic thinking.

Why is assessment so important? Having students demonstrate their understanding of the topic is essential to their learning process. Assessment helps to evaluate the student’s understanding of the subject matter and provides instructors with evidence of whether or not their educational goals are being met – both as a formative and a summative tool. However, the use of different programming languages and tasks in computer science classrooms make it challenging to develop a standardized test. Hence, it is important that we develop an understanding of what assessments are available, the caliber of the assessments including validity and reliability of available CS assessment.

Given the role of assessment, CSTA with funding from Google is undertaking this important task of examining the assessment landscape in high school computer science classroom. To meet the objective, CSTA Assessment Landscape Planning Committee will conduct a study to learn more about how CS teachers are using assessment in their own classrooms both to inform day-to-day instruction as well as end of course learning outcomes.

Aman Yadav
Chair, CSTA Assessment Landscape Planning Committee

Computational Thinking and Beyond

Since Jeannette Wing described computational thinking (CT) in her 2006 Communications of the ACM article, it has gone beyond computer science and now become a “hot topic” within educational technology communities of practice. A quick search for the keywords “computational thinking” in education conference proceedings, such as Society of Information Technology and Teacher Education, E-Learn, American Educational Research Association among others yields a growing number of papers on CT. The ideas presented range from computational thinking for teacher education to incorporating computational thinking for students in a wide array of content areas including science, mathematics, and language arts. Educators and researchers in educational technology have started adopting CT and are extending it beyond computer science to creativity and problem solving. As an example, teachers attending our Masters in Educational Technology program at Michigan State University have deep interest in computational thinking and how to expose their students to algorithmic thinking, data representation, and logical thinking across. These teachers are incorporating CT practices by exploring Maker Education (#makered) approaches that allow their students to tinker and play with tools (such as, MakeyMakey, Raspberry Pi, Paper Circuits, etc.). Through these projects students (and teachers) are developing core computational thinking dispositions that Valerie Barr and Chris Stephenson identified in their 2011 article on bringing computational thinking to K-12. Specifically, students in these classrooms are learning to work with “wicked problems” that are open-ended, complex, and often have more than one solution and multiple ways to arrive that the solution. The interest in computational thinking from teachers across disciplines provides opportunities for computer science educators to collaborate with fellow educators to show students how computational thinking ideas span subjects and overlap with core computer science concepts.

Aman Yadav
Twitter: @yadavaman
Teacher Education Representative
CSTA Board of Directors