FORTIFYING OUR POSITION

This past week I was asked to fill in for a speaker, at the NGA 2018 Governors’ Education Policy Advisors Institute, that was not able to make it due to Hurricane Florence. First, let me extend my sympathies to those on the East Coast that were affected by the storm and resulting floods; my thoughts and prayers are with you and your families.

During the short time, approximately 23 hours, I had to prepare for my speech, I thought about “what do I want to discuss.” Of course, I could have presented the same “Computer Science in Arkansas” discussion that I have given so often that I recite it in my sleep, but I decided since I had gubernatorial policy advisors in the room, that I would issue a challenge, or what turned into a series of challenges. I will share some of those challenges and thoughts here.

While a good portion of the speech focused on the technological displacement, or in a positive light “emerging jobs creation,” I also reminded the group of the following:

“Exposed deficiencies in our educational system come at a time when the demand for highly skilled workers in new fields is accelerating rapidly. For example: Computers and computer-controlled equipment are penetrating every aspect of our lives–homes, factories, and offices.
We must emphasize that the variety of student aspirations, abilities, and preparation requires that appropriate content be available to satisfy diverse needs. Attention must be directed to both the nature of the content available and to the needs of particular learners. The most gifted students, for example, may need a curriculum enriched and accelerated beyond even the needs of other students of high ability. Similarly, educationally disadvantaged students may require special curriculum materials, smaller classes, or individual tutoring to help them master the material presented. Nevertheless, there remains a common expectation: We must demand the best effort and performance from all students, whether they are gifted or less able, affluent or disadvantaged, whether destined for college, the farm, or industry.
The teaching of computer science in high school should equip graduates to: (a) understand the computer as an information, computation, and communication device; (b) use the computer in the study of the other Basics and for personal and work-related purposes; and (c) understand the world of computers, electronics, and related technologies.”

When I informed the group that this was from A Nation at Risk published in April of 1983, I noted quite a few shocked faces. Then I asked the real questions. What has changed in education over the past 35 years? Has the role of teachers changed to better utilize the technology that is becoming not only more prevalent within our classrooms, but also increasingly crucial for students to learn before they are sent into a job market that demands they have an appropriate amount of digital literacy mixed with problem solving skills?

Many industry leaders I interact with say that the K-12, or even the K-16, system is not providing the workers with the skills they need. The current workforce has more computing power and digital resources at their disposal than at any time in history, yet we find that some just cannot or choose not to “get the job done.” Our industries do their best to provide the latest technology, a safe and comfortable work environment, and on-the-job training. They encourage, correct, direct, and support their employees, yet they still are often left with producers of subpar work. Why is this? Is it because we at the K-16 space have in many ways failed? I do believe that the fault has to partially lie at the feet of educators, and I include myself in that fault group. We are failing to produce more problem solvers than brain flushers.

What is the solution? It is to not teach (or at least teach as it is currently understood). A big part of the solution will be educators who become facilitators of learning. They will allow our kids to grapple and struggle with real problems on a daily basis; allow them to get frustrated occasionally and find a solution to that frustration on their own; and stop rewarding bad practices and mediocre effort in order to not hurt someone’s feelings. Industry doesn’t reward poor performance, so why should education establish this as an expectation within our students?

One of the reasons I love technology and computer science is because it doesn’t care about feelings. It expects and demands perfection because it knows nothing different. Students and adults who are programming computers have to be precise. They have to work out a way to a solution that works all the time. They have to try to break their own product through testing. These are all actions that develop communication, problem solving, self-reflection, and personal growth. Teachers moving to a facilitator mode, can leverage technology to meet the needs of our high performers, main stream students, and those that need additional support. This type of approach is what will produce a workforce that better meets the soft skill and technological prowess needs of our industries.

If we want the excitement and movement that is happening in the computer science education community to continue and have a positive long-lasting impact, we must each ask ourselves on a daily basis, “what am I going to do to ensure that the educational system undergoes radical positive change that will prepare our students to meet the needs of industry?” In short, what are we doing to make sure that in another 35 years, we are not still a nation at risk.

Anthony A. Owen
State Department Representative

Call for Input: K-12 Content on Computing, Ethics and Social Responsibility

I’ll start with the punch line: I’m starting to get involved with understanding what innovative approaches are appearing in higher education throughout the world in educating students about the intersection of computing with ethics and social responsibility. I’m sure there are some equally innovative things going on at the K-12/pre-university level. If you’re involved with education in this area, or if you know of interesting work that others are doing, I’d love to hear from you – just email me at bobby@colorado.edu. In subsequent blog posts I will share things that I’ve learned, from you and from the higher education community.

I doubt one needs to say why this topic is important. Once upon a time, computer science was far removed from societal implications. We worked on writing operating systems and compilers – the things that go on inside the computer – or applications in business data processing and scientific computing. When computers impacted society, that impact was fairly far removed from what the computer scientist had worked on directly.

How times have changed! Computing professionals often now work on applications that directly impact the basic fabric of our society. This can be social network software that for many of us has become a dominant form of human interaction; or robotic systems that are or will be used as substitutes for human interaction in eldercare and maybe even childcare; or artificial intelligence systems that are used as the basis for making judgments in situations ranging from loan applications to judicial sentencing; and dozens more that you can readily add to this list.

The implication is that not only do computing professionals need to be taught, as a topic just as fundamental as programming or machine learning, to think in terms of the ethics and social implications of what they do – but that every citizen needs to have this perspective as well as they deal with computing systems that are ubiquitous in our society. Creators of computing systems need to apply high moral and ethical standards to their work and learn to think about the consequences, intended or not, of the systems they create; users need to realize that computing tools may have biases or harmful consequences, and aren’t necessarily perfectly trustworthy just because they come from a “machine”. This means that all students need to be exposed to these perspectives, beginning when they start learning computing in schools. I look forward to learning what you may be doing in this regard or just hearing your thoughts on this topic!

Bobby Schnabel, Partner Representative

What does it mean to be a Computer Science Teacher?

Two weeks ago, I had the opportunity to attend a robotics competition with a team of students that I coached through the summer, and I was amazed by the feeling I got being in the same room as many other CS teachers. This got me thinking about the CS teacher profession. I believe that CS teachers are a unique breed. I’ve read so many articles, seen so many posts from other CS teacher friends and all have something in common, one way or another at some point the fact that it can be a “lonely” position is brought up.

Indeed, almost everywhere CS teachers may be the only one within their departments, their school or even their district. Honestly, CS is an amazing, beautiful and engaging subject but none the less not an easy subject to teach. Many of us who have embarked in this adventure for a while now know that being a CS teacher means you become a life time learner and that mapping a curriculum every 3 to 4 years is just part of the main to do list. Other subjects have many years’ worth of curricula with minor changes happening through the years, but computer science is constantly on the move and the content becomes obsolete fast. So, a lesson plan that might have worked wonderfully 5 years ago might not be useful now. Of course, there are the basics that are modified but not vastly changed. So, creating a curriculum is just part of our daily tasks.

A computer science teacher may have different backgrounds. Some come from the CS industry and have a CS background, others are “imported” from teaching other subjects such as science or math and some have a technology education degree. I was searching online for a specific degree in Computer Science education and although you can easily find a master’s degree with a CS education concentration, I had a hard time finding a CS education bachelor’s degree. What most colleges or universities recommend is getting an education degree to later get a CS education master’s degree or have a CS degree and get a teaching license. All that is perfect, but I think that CS teachers need better training and just as I mentioned before it can become hard to teach a subject you are not properly trained for. I read this past week a post from a CS friend on Facebook that was asking mostly himself if he knew “too much” about CS to teach a beginner’s class, and I thought that this is the kind of things that make us unique. A math teacher will probably never ask themselves if they know too much math, or maybe they do, and I just don’t know.

A Computer Science teacher also becomes a “fix it all” individual, the teacher that quite possibly has a charging cable in their labs, knows the basics of fixing a computer and has students going into their class asking if you how to fix theirs.

Throughout the years organizations such as CSTA, ISTE, Code.org, Oracle, and the College Board among others have taken big steps to support CS teachers and making our jobs easier in the planning phase, prepping and the dreaded paper work part. Still, in our own hometown, there is yet a very small number of Computer Science teachers and that needs to change. Every time I have the chance to attend a conference, event, competition or workshop that is specifically for CS, that is when I feel I am home. I know that the people around me have the same challenges and successes, have the same feeling of sometimes teaching a lonely subject. So, getting this sense of community goes along way. I hope that at the rate CS education is growing around the world, that sense or community remains.


Michelle Lagos
Representative at Large

Using Genius Time/Passion Projects to Encourage Exploration of Computer Science

Genius Hour is a movement that allows students to explore their own passions and encourages creativity in the classroom. It provides students a choice in what they learn during a set period of time during school. The Genius Hour movement has been around for years and has been used by some of the world’s leading innovative companies. One of those companies, Google, allowed their engineers to spend 20% of their time to work on any project that they’re passionate about. The philosophy behind this movement is that when people are given the opportunity to work on something of personal interest, productivity goes up. Well, they were right. Since Google’s implementation of Genius Hour, fifty percent of their projects, including Gmail and Google News, have been created during this exploration time. Who would have thought that allowing employees the freedom to explore their own interests during work time would contribute to the company’s success?

Since its inception, Genius Hour has made its way into the world of education and is transforming the way students learn and take ownership of their learning. There have been many educators leading the way with Genius Hour in their classrooms and most of their inspiration has come from Angela Maiers and Amy Sandoval’s book The Passion-Driven Classroom: A Framework for Teaching & Learning. Recently, I have become inspired by this Genius Hour movement as well, and I have started to explore how I could apply it in my own classroom. More specifically, I have thought about how could I use Genius Hour to encourage my students to further explore the field of Computer Science. There are so many areas of study in Computer Science and I often find myself just providing a brief summary for my students to spark their interest. But what if I could ignite that spark, and then provide an opportunity for my students to keep the flame going?

Recently, my school district made a commitment to personalized learning for all students and invested in personalized learning coaches that will help with implementation in the classroom. When it comes to personalized learning in the classroom, no single thing is more powerful than Genius Hour. One of the coaches loaned me Andi McNair’s book Genius Hour: Passion Projects that Ignite Innovation and Student Inquiry. After reading this book, I definitely feel prepared to ignite that spark and implement a Computer Science Genius Hour in my classroom. McNair say, “Genius Hour provides students with opportunities to discover what it means to think for themselves, to really pursue something that is meaningful to them.” She also goes on to say that, “It’s time to realize that in our classrooms sit the world changers, inventors, and innovators of tomorrow. Our students are the future.”

This school year, I have decided to embark on a Computer Science Genius Hour Journey with my students. I am so excited to give my students the opportunity to further research Computer Science as a field, explore related topics, and potentially collaborate with outside experts in the field. Ultimately, I want to encourage my students to make a personal connection with Computer Science. Through those personal connections, my hope is that they discover their own passion in computer science and find ways to impact their world through their discoveries.

If you’ve implemented Genius Hour in your Computer Science classroom, I would like to hear from you. If you’re interested in taking this journey, below are some additional resources that I have found to be helpful:

  • AJ Juliani’s “The Research Behind Genius Hour” provided insight on connecting standards to inquiry-based learning. http://ajjuliani.com/research/
  • Chris Kesler’s Science Blog provides “10 Reasons to do Genius Hour with your Students” – https://www.keslerscience.com/what-is-genius-hour/
  • Chris Kesler and AJ Juliani’s website (http://geniushour.com), provides a free webinar called “Getting Started With Genius Hour: The Step-by-Step Guide to Structuring Genius Hour.” They also offer a Genius Hour Master Course, which is a comprehensive course that walks you step-by-step through Genius Hour and how to implement it in the classroom.
  • Westside Community Schools Personalized Learning website (http://westsidepersonalized.com) provides a wealth of resources, as well as podcasts that highlight how teachers in my school district are implementing personalized learning.
  • Westside Community Schools EY (Gifted) Website (http://ey.westside66.org). Follow the “Enrichment” tab to “Passion Projects” to find templates and suggestions for Passion Projects

Kristeen Shabram
K-8 representative

It Takes a Team

When I think of computer science educators, computer science education, and computer science curricula, I think about all the people needed to make it a successful endeavor in a school district and in a larger community as well.  Who are the they? How do you leverage their roles to help further computer science education? Three years ago, my district, Valhalla UFSD, embarked on a journey to bring computer science to ALL of our students, K-12.

Valhalla is a small middle to upper-middle class suburban district outside of New York City.  We have approximately 1600 students districtwide. Valhalla High School has always offered AP Computer Science A, but we needed more.  Once I began teaching the class, I petitioned for an Intro to CS course and was granted the class.  This was the beginning of the expansion, but I still had no one particularly interested in helping me promote these courses. It was up to me to make it happen.

The courses went well, but then in my very small school, AP numbers dropped and the trend in the district went away from AP courses and moved to dual enrollment courses with the local community college.  I taught C++ and numbers slowly increased over a few years. Students were getting hungry for more.

Here is where people matter.  I was approached by my principal, Mr. Jonathon Thomas, who told me that our superintendent at the time, Dr. Brenda Myers (winner of the 2017 CSTA Administrators Award), was interested in offering a game design course and wondered if I would be interested in teaching it.  Bingo! Here were my advocates for computer science education in Valhalla. A little petrified, but eager, I had a year to prepare. The course, as expected, was a big hit. As time went on, I suggested adding to our offerings a Mobile App Development course, which was also very well received.  

So now, juggling all of these courses, I realized I needed some help, in and out of school.  Outside of school, I turned to CSTA to find a local chapter to network with other teachers. To my dismay, there was no local chapter, so I chartered one.  

Inside school, I turned to Dr. Myers.  She was all for expanding CS education to the four buildings in the district, which include a K-2 primary school, 3-5 elementary school, 6-8 middle school, and the 9-12 high school.  In 2015, she called a meeting for a newly formed “Special Projects Team” of 4 computer teachers, one from each building. I looked around the room at my three colleagues, whose CS backgrounds were non-existent (they taught computer applications).  We were told we are all going to teach CS, we are all going to learn together, and yes this is going to be bumpy. I have amazing colleagues. No one blinked – we just did it.

Fast forward to today – I am back to teaching AP-CS A, and we have a comprehensive K-12 computer science, engineering, and robotics curricula, which we are currently aligning to the new CSTA Standards. Our kids are programming, thinking computationally, and problem solving in all grades.  We have the full support of our district Board of Education as well as our building and district administrators, and guidance teams. We have a community willing to approve budgets and offer grants to increase our offerings and expand our programs and invest in the technology. We owe our progress to the amazing people in Valhalla to believe in the future of computer science education.  Our children are the recipients of rich and diverse CS curricula from Kindergarten on.

So find your advocate, find your support, and find your team of players.  Reach out to your administrators, communities, and students to find out what you can do together to move computer science education forward in your district.  It’s made all the difference in ours.


Amy Fox, 9–12 Representative

Increasing equity and inclusion in computer science education

Last month I attended my first CSTA conference. I LOVED the positive energy. From the keynote speakers to the exhibition space to the breakout sessions, everyone at CSTA2018 seemed genuinely happy to be together and they were clearly excited to share, learn, and ultimately do more for students.

My favorite part of CSTA2018 was the session with Andy (Andrea) Gonzales. In short, while in high school, she and a friend created a viral video game, won a Webby Award, wrote a book, were covered by multiple media outlets and now she is on a full ride scholarship to both UNC Chapel Hill and Duke. Impressively, she’s determined to leverage her space in the spotlight to do more for other young women like herself.

Andy talked about the exclusion she felt as a young woman learning computer science. She shared that the early support of an adult (her male summer camp counselor) was key to her success today. She described the misconceptions she had about computer science and the stereotypes that so many other young women and women of color struggle with. She emerged from her experiences more empowered and now wants to empower others.

Andy and her story are impressive. And yet, the thing that struck me the most about Andy was the response she garnered from the adults in the room.

Nearly all the questions Andy fielded from the audience of 700+ computer science education teachers and advocates were about they could do more to support girls and students of color in their computer science classes. How can I get more girls to join? What do you think I can do differently? Of the few girls I have in my computer science classes, how can I get them to engage more? How do I best support my students of color?

These questions clearly articulated the teachers’ desire to do more to help ALL their current or potential CS students succeed. They also illustrated the gaps that exist for teachers to find – and then implement – the resources that would help them reach this goal.

To be clear, I am not an expert on this topic. And in full transparency, I work for a tech company that is actively working on how it makes progress on diversity, equity and inclusion internally and how it can play a role in increasing equitable access to computer science education around the world.

I do know that there is a lot of good and important work that has been done on equity and inclusion in education broadly, and specifically in math and science. And while we are making progress, and there is a lot of great research on what the issues and challenges are in diversity, equity and inclusion in computer science, what I hear from teachers and others in CS education is that we still have work to do to make practical solutions easy for teachers to bring to life, specifically for computer science.

I know that by sharing a short list of resources, I am bound to leave things out. But with the goal to start somewhere, as I’ve been on my learning journey, others have told me that the following resources and information have been helpful in their work to support success for all students in their computer science classes and programs.

I’m sure you have some you want to share – please do! Post them on Twitter, tagging @csteachersorg with the hashtag #CSforAll so others can see them too. You can view all posts that use these two tags here.

Defining the issues:

Practical tools and resources for teachers and schools:

Recent blog posts by fellow CSTA board members:

Yvonne Thomas
Partner Representative CSTA Board

Shout out to chapter leaders!

If you’re reading this blog you probably know that the CSTA annual conference happened last month in Omaha. It was my first conference as Executive Director and I had a blast! If you weren’t able to make it I hope you could engage in some of the community and conversations via #CSTA2018. What you may not know is that 70 chapter leaders from 30 states and Puerto Rico came together for a pre-conference leadership summit. The energy and excitement from this group of passionate leaders was infectious.

Amy Fox, Fran Trees, Ramsey Young, and Chinma Uche made up the amazing team of volunteer chapter leaders led the full workshop and they all deserve a huge thank you for their hard work (and willingness to put up with long video calls). At the end of the workshop we had a survey for feedback, and there was one key comment that stood out to me:

Meeting everyone and hearing that we are making progress in my state in comparison to other states. It made me feel good about what we have accomplished but also give me direction as to what still needs to be completed.

During my first six months at CSTA I’ve had the opportunity to connect with most of our chapter leaders, and over and over I’d hear about innovative programs, strong communities and passionate teachers. I’d also always hear some form of “I just don’t know if this is enough, what else should we be doing.” It’s an important reminder that just like teaching CS, volunteering to lead a chapter or pushing for policy change in your local context is often lonely work.

It’s so easy these days to turn every minute of a workshop, conference or chapter meeting into targeted programming with a specific outcome, yet whenever we look at feedback it’s clear that the most important learning happens when dedicated volunteers are given the opportunity to interact with each other. None of us live in a vacuum, and without constant opportunities to connect and hear about what’s happening across town or around the globe, we’ll never be able to level set. As an outcome of this summit we’ll be launching regular video calls for chapter leaders to connect and learn from each other throughout the year.

Remember, you’re not measuring yourself or your chapter against perfection (it’s an impossible bar to set) and as we dive into the next school year I hope you use your CSTA community as a way to level set and celebrate the little wins. Oh, and let your chapter leader know when they’re doing something great — they all made big plans and deserve much love for the work they do!

Jake Baskin, Executive Director

Contexts and Roles in CS Education

To make the case for computer science and to develop an effective program, educators must understand the context and the roles people play.

First, a few clarifications:

  • Computer science (CS) here refers to educational experiences where the primary objective is to develop computing skills and knowledge.
  • Computational thinking (CT) refers to using computational practices in CS and in other disciplines.  For example, using computer modeling and simulation in science and engineering courses.

In this post I’ll focus on the subjects and teachers with an especially strong affinity with CS / CT.  These are people that might be already teaching CS, and most definitely should be incorporating CT. They include:

  • Digital Literacy / technology integration
  • STEM  (math, science, engineering, and computer science).
  • Career & technical education (e.g. IT, engineering, business)

Other teachers, for example social studies and humanities teachers, are less likely to teach CS – it’s certainly possible, but would be a more significant departure from their regular teaching duties than the above.  However, there are ample opportunities to incorporate CT practices.

Digital literacy, educational technology, digital citizenship.

These areas, in general, are about the safe and effective use of technology for a variety of uses.  Business teachers will focus on using technology for business purposes. Technology integration specialists or library / media specialists tend to support the integration of technology across the curriculum.  While these areas are not strictly CS, these educators are excellent candidates to become CS teachers. They are also great candidates to support the integration of CT.

Note:  A comparison between these areas and computer science is available at the K12 CS Framework.  (K12CS, Defining Computer Science.)

STEM education.

In a nutshell: science is about systematically exploring phenomena; engineering is about designing and developing technologies.  Mathematics and computing are tools that are used to do science and engineering.

Computer science is fundamentally mathematical, rooted in formal logic.  Math educators are great candidates to teach CS, but it’s important to consider the primary objective.  CS can have a strong mathematical focus, for example, when you are working with data and analysis.

Computer science is a science – it is the study of the principles and use of computers.  CS is also an engineering discipline – it includes the design and development of computer hardware and software.  It’s important to remember that using computing tools to advance other science and engineering disciplines is not exactly CS – this is computational science and engineering, which is very much in the realm of CT.

I think it’s important to remember that teaching CS and incorporating CT into other subjects are different things, albeit both very important.

Note: The K12 CS Framework also includes great information on computational thinking, including a venn diagram that connects CS / CT practices with math, science, and engineering practices.  (K12 CS, Computational Thinking).

Career & Technical Education

Career & Technical Education (CTE) is an umbrella term that includes a number of career clusters (occupation groups) and pathways (leading to specific occupations).  CTE programs are generally two-year programs that students may take towards the end of K-12.

The Information Technology (IT) cluster in CTE​ includes the following pathways:

  • Network Systems Pathway
  • Information Support & Services Pathway
  • Web & Digital Communications Pathway
  • Programming & Software Development Pathway

While the IT pathways are clearly closely related to CS, there are a few important points worth making.  CTE programs are upper-HS level, and focus on specific skills for a certain career pathway. This is different from a K-12 CS program, which focuses on core CS skills and knowledge that are applicable in many careers not only in IT, but also in other clusters such as engineering, business, etc.

The bottom line is that students should learn fundamental CS skills and knowledge earlier in K-12 so that they can apply them to whatever pathway they pursue, whether or not they participate in a CTE program.

For more information about career clusters, please visit: Advance CTE, Career Clusters.

The social sciences and humanities

While I focused on strong affinity groups here, I don’t want to entirely leave out other groups.  Like other sciences, the social sciences are increasingly data-driven and rely on computational methods.  The humanities are a great place to explore the impacts of technology on society. Arts educators employ practices that are related to engineering design and development processes.  The discussion could go on into other disciplines.

Aside from systemic constraints, the degree of CT incorporation into these areas is limited only by the knowledge and imagination of the educators, and can be strongly aided by effective collaboration.  

So… where does CS / CT go?!?

Educators need to determine how to build a CS program that fits their need.  Schools need a strong CS program, and they also need to incorporate CT across the curriculum.  There is no magic bullet, but any solution starts with a solid understanding of the context and possibilities, and a concrete plan to move forward.

David Benedetto

David Benedetto, At-Large Representative

Tips for CS PD Facilitators

As we gear up for the new school year, many of us are entering into professional development (PD) soon. I am lucky enough to have the opportunity to plan and facilitate PD for teachers in San Francisco, and based on this experience, I’d like to offer some tips that I believe contribute to successful learning experiences for teachers.

Model best practices

  • Facilitate learning. Teachers should experience sessions in a format similar to their students. Be the guide on side, not sage on the stage. And, please, please, please don’t lecture about active engagement.
  • Be explicit about strategies used. Then, allow teachers to reflect on whether and when the same strategies could be useful in their own classrooms.
  • Set explicit learning goals and measure progress towards those goals. If you want to develop a strong community of practice, state this explicitly as a goal, actively work towards this goal through collaboration and team building, and measure progress through surveys and observations. Do the same with content and pedagogy-oriented goals.
  • Differentiate. Groupings or breakouts based on grade level, content area, or other contextual factors can be useful, but this in itself is not differentiation. Consider multiple means of representation, action/expression, and engagement. Set consistent baseline objectives for everyone, and create different levels of scaffolding and extensions to challenge teachers at the appropriate level.
  • Allow choice. Let teachers decide what is important and relevant to them. They cannot choose everything, but make sure have some agency.

Record, reflect, assess

  • Compile all resources and make it easy to access them. Consider a simple website or hyper doc (e.g, SFUSD’s PLC site).
  • Create shared notes documents so everyone can benefit. This allows a good record for teachers to remind themselves during the school year and allows those who missed out to reap some of the benefits. Ask for volunteers to contribute to the notes documents at different times.
  • Prioritize time for reflection. It’s important for teachers to process their learning and consider how they will apply new ideas and strategies. Thoughtful reflection improves transfer to classrooms.
  • Ask for feedback. This can help you evaluate, plan for future sessions, and improve facilitation. Don’t wait until the end to ask for feedback. Create formative measures.
  • More importantly, use the feedback to change plans and improve. And, show a summary of participant feedback each day, and explicitly note the things you’re changing to respond to feedback.
  • Assess learning. Don’t rely solely on feedback. Use similar assessment measures to those used in the classroom. Collect teachers’ projects to examine more closely.

Attend to the environment

  • Create a welcoming and inclusive space. Try to choose a room that is colorful and filled with natural light. Take down any Star Trek posters and replace with something that appeals to everyone. Create table groupings to make it easier to collaborate.
  • Set and reinforce norms. As teachers come from different communities and cultures, it can be helpful to adopt a set of common norms. Reinforcement can come through reflection, a norms tracker, and celebration of colleagues.
  • Make it fun! Throw in some corny jokes and spontaneous dance parties. Play music during breaks. Put candy and LEGOs on the tables.
  • Include breaks. Breaks allow teachers to take care of personal needs, engage in informal collaboration, and maintain better focus during sessions.
  • Get teachers up and moving. No one likes sitting all day. Movement is especially important after lunch because this is when most people’s attention starts to fade (the “trough”).
  • Mix up groupings. Many teachers default to choosing teammates whom they already know, but they also prefer to get to know new people. Facilitate this by thoughtfully designating grouping strategies and consider when teachers should collaborate with teachers from different and similar contexts.
  • Switch up the facilitation. Just like students get tired of hearing the same teacher all day, teachers feel the same way. Work to mix up both the facilitator and methods of facilitation as much as possible.
  • Empower teachers to lead and share their best practices. One way to do this is an unconference in which teachers select and run sessions based on their interests.

Show teachers you value them

  • Pay teachers. Teachers already work hard enough. If the PD doesn’t happen during the contract time, it’s important to compensate teachers for their commitment.
  • Provide good food. It doesn’t have to cost a lot to be thoughtful. Make sure to include some healthy options and attend to dietary restrictions. Unlimited snacks go a long way.
  • Provide the materials needed to implement lessons/curriculum. It is a huge lift off of teachers to give them ready-to-go materials. They’ll be very appreciative of the time (and money) you saved them.
  • Celebrate success. A fun and easy way to close the week is for teachers to create their own superlative awards to celebrate something they are proud of and share with the community (e.g., best debugger, craziest sock wearer, biggest risk taker).
  • Don’t treat adults like they’re children. Let teachers decide what’s best for them. Structure can enable productivity, but too much structure or accountability can foster resentment.

Other pro tips

  • Sprinkle in tips and tricks, and allow teachers to share these. Examples are new tech tools (e.g., yellkey.com), brain breaks (e.g., GoNoodle.com), team builders (e.g., Zip Zap Zop!), and showcasing strategies (e.g., Michelle Lee’s tips for amplify student voice).
  • Go beyond the (one) curriculum.Teachers new(er) to CS need to develop a decontextualized knowledge of CS and be empowered to determine the best ways to teach concepts to their students. Try to not just use one lesson or curriculum but offer several options on a related topic and ask teachers to contribute others and reflect on the usefulness in their own contexts.
  • Don’t try to do too much. You cannot do everything in one hour, one day, or one week. Decide what’s most important based on the teachers who will be attending and set measurable and achievable learning outcomes for the time you have. Expect things to take ~50% longer than you think they will.
  • Don’t let it be a one and done. Ensure there are follow-up mechanisms throughout the year. An effective way to do this is to create a community of practice, with both an online presence and regular, in-person convening.

What tips did I miss? Tweet @btwarek and @csteachersorg.

Bryan Twarek School District Representative

Jennifer Rosato elected as incoming chair of CSTA’s Board of Directors

Dear CSTA community,

I am delighted to inform you that at the CSTA summer board meeting on July 11, 2018, Jennifer Rosato was elected as incoming chair of the board.

photo of Jennifer Rosato, CSTA chair-elect

Jennifer Rosato, CSTA chair-elect

Jennifer (“Jen”) Rosato is Director of the Center for Computer Science Education at the College of St. Scholastica and an Assistant Professor in Computer Information Systems. She leads the Mobile CSP project, including curriculum and professional development for the AP CS Principles course. Rosato also works on teacher education initiatives, including integrating computer science and computational thinking in pre-service programs as well as a graduate certificate program for current teachers.

Jen began her term as incoming chair immediately upon the election results being announced; at next year’s summer board meeting, she will become chair and I (Fred Martin) will become past-chair!

Also at the board meeting:

  • Newly elected board members Kristeen Shabram (K–8 Representative) and Amy Fox (9–12 Representative) began their 2-year terms.
  • Elections were held for 1-year terms on the Executive Committee. Serving for 2018–19 will be Anthony Owen, Bryan (“BT”) Twarek, and Jane Prey.

Our organization is fortunate to have such accomplished, dedicated, and generous volunteers to help make CSTA great.

Thank you to all CSTA board members, and a special congratulations and thank-you to Jen Rosato.

Yours,
Fred Martin, Board Chair